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Abstract

Simplifying polygonal curves at different levels of detail is an important problem with many ap-

plications. To facilitate exploration of these simplifications, we wish to seamlessly switch between

different levels of detail. These simplifications must thus be consistent with one another. We

call such a set of inter-consistent simplifications a progressive simplification. Existing geometric

optimization algorithms used for curve simplification minimize the complexity of the simplified

curve for each level of detail independently. These algorithms therefore do not produce progressive

simplifications. All currently known progressive simplification algorithms are based on heuristics

and thus do not strictly minimize the simplification complexity.

In this thesis, we wish to bridge the gap between these two types of algorithms. More specific-

ally, we wish to produce progressive simplifications for which the sum or integral of the simplific-

ation complexity over all levels of detail is minimized. We present an algorithm that solves this

problem in O(n3m) time, where n is the length of the input curve and m the number of different

levels of detail. This algorithm is compatible with any distance measure such as Hausdorff or

Fréchet, and can be used to compute an optimal simplification for continuous scaling in O(n5)

time. We further explore two greedy algorithms with a running time of O(n2m). These algorithms

greedily construct each simplification, and may therefore yield a set of simplifications for which

the cumulative complexity is non-minimal.

All algorithms proposed in this thesis are based on an existing computational framework that

employs finding shortest paths in so-called shortcut graphs. These are graphs in which each edge

represents a single line segment that is a valid simplification for a contiguous subsequence of the

input curve. Each such line segment is called a shortcut.

To speed up the simplification algorithms, we present multiple supporting techniques pertaining

to these shortcut graphs. First of all, we propose a space-efficient representation of the shortcut

graph that can be used to find shortest paths in O(n log n) time in practice. This is an improvement

over using breadth-first search in O(n2) time. Furthermore, we present an algorithm for efficiently

constructing shortcut graphs under the Hausdorff distance for many different levels of detail. This

algorithm computes the error of all shortcuts in O(n2 log n) time, improving over O(n3) time using

existing techniques.

Experimental evaluation of the developed techniques on animal movement data reveals that the

new representation of the shortcut graph drastically lowers the memory usage while significantly

improving the running time of using shortcut graphs for curve simplification when compared to

existing techniques. The optimal progressive simplification algorithm produces simplifications that

are comparable in size to minimal non-progressive simplifications, but was found to be limited to

small input curves. We showed that one of the greedy algorithms is a good alternative which

produces near-minimal progressive simplifications.
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Chapter 1

Introduction

Given a polygonal curve as input, the curve simplification problem asks for a polygonal curve that

approximates the input well and that uses as few points as possible. The approximation error

between the input curve and the simplification is typically defined by the maximum distance –

typically Hausdorff [12] or Fréchet [4] – between an edge of the simplification and the corresponding

subcurve of the input. An example of such a simplification is given in Figure 1.1a.

Because of the importance of data reduction, curve simplification has a wide range of applic-

ations. Cartography is such an example, where the visual representation of line features such

as rivers, roads, countries or boundaries of regions needs to be reduced. Nowadays maps are

interactive, so we need curve simplification that works with different levels of detail. Zoomable

maps require progressive simplification, that is, a simplification that progressively increases the

complexity of the representation when zooming in. To illustrate how progressive simplifications

are different from non-progressive simplifications, consider Figure 1.1b and Figure 1.1c. Each

progressive simplification produces a set of curves that is inter-consistent, meaning if we zoom in

on the curve, we add additional detail while retaining the existing points.

ε

(a) (b) (c)

Figure 1.1: (a) Simplification of a polygonal curve from 13 to 5 points, with Hausdorff distance ε.
(b) Non-progressive simplification triplet. (c) Progressive simplification triplet.

Existing progressive algorithms (e.g. [5]) work by simplifying a curve, then simplifying the

previous simplification, and so on. More concretely, a common approach is to discard the point

whose removal introduces the smallest error (according to some criterion). Next, we proceed with

a simplification where we remove the point with smallest error from the simplified curve of the

previous round. For instance, the algorithm by Visvalingam and Whyatt [24] always removes the

point which together with its neighboring points forms the smallest area triangle.

Such approaches stand in stark contrast to (non-progressive) curve simplification algorithms

that aim to minimize the complexity of the simplification while guaranteeing a (global) bound on

the error between the simplification and the input curve. The most prominent algorithm with

a global bound on the Hausdorff distance is the Douglas-Peucker simplification algorithm [10].

While heuristically aiming at a simplification with few points, this algorithm does not actually

1



2 Chapter 1. Introduction

minimize the number of points. An algorithm that minimizes the number of points and guarantees

a certain bound on the simplification error is called a min-# simplification. Alternatively, one

can fix the number of points in a simplification and minimize its error value ε. This problem is

referred to as the min-ε simplification problem.

The error bound in existing progressive algorithms is relative to the previous simplification and

may accumulate during the simplification process. In this thesis we present the first progressive

min-# simplification algorithm which does not compromise the error bound. We extend an existing

non-progressive min-# algorithm and are faced with optimizing computational aspects from this

algorithm which form a bottleneck either in terms of memory usage or running time. Therefore, we

present several supporting techniques for computing min-# simplifications. Although this thesis

centers around progressive simplification, these techniques can be applied in a non-progressive

setting as well. We further outline these contributions in technical terms at the end of Chapter 2.

Related Work

Curve simplification is a well-studied problem in the past 30 years due to its importance to

applications in various domains. Imai and Iri [16] introduced a general approach for computing

min-# simplifications by finding shortest paths in so-called shortcut graphs. Similar algorithms

were presented in a series of papers [17, 23], resulting in algorithms under the Hausdorff distance

with a running time of O(n2) and O(n2 log n) for min-# simplification and min-ε simplification

respectively [6]. Shortcut graphs are flexible and can be used in conjunction with any error

measure. One such error measure was proposed by Imai and Iri [15] for covering rectangles. They

solved the min-ε problem for this error measure using an O(mn(log n)2)-time algorithm minimizing

the widths of m covering rectangles.

For the L1-metric, Agarwal and Varadarajan [2] presented an O(n4/3+ε)-time algorithm using

a clique-cover to represent the shortcut graph. Agarwal et al. [1] later devised a greedy approx-

imation algorithm for the min-# problem under the Fréchet distance, running in O(n log n) time.

This algorithm produces simplifications for error bound ε that are at most as large as optimal

min-# simplifications for error bound ε/2.

Instead of approximation, applications often use heuristics, such as the simplification algorithm

by Douglas and Peucker [10]. This algorithm uses the Hausdorff distance, and aims to heurist-

ically minimize the number of points. The worst case running time of this heuristic is O(n2).

Hershberger and Snoeyink [13] showed that this heuristic can be implemented to run in O(n log n)

time, which they later improved to O(n log∗ n) time for non self-intersecting polygonal paths in

the line model [14].

As previously mentioned, progressive simplifications are commonly used in cartography [19].

A popular such algorithm was proposed by Visvalingam and Whyatt [24], which iteratively re-

moves the point which is part of the triangle with the smallest area. Inspired by this, Daneshpa-

jouh et al. [8] defined an error measure for non-progressive simplification by measuring the sum

or the difference in area between a simplification and the input curve. Under the area difference

measure, they devised a quadratic-time min-# approximation algorithm.



Chapter 2

Preliminaries

Before delving into the engineering of the algorithms, we present technical details that lie at the

core of the problems that we are trying to solve, and the framework we use to solve these problems.

The details discussed here will remain central throughout this thesis, and should therefore provide

a frame of reference for the chapters to follow.

We open this chapter with a discussion of minimum-link polygonal curve simplifications on

a single scale (Section 2.1), followed by how this problem can be extended to produce so-called

progressive simplifications (Section 2.2). In Section 2.3, we present an existing computational

framework used for single-scale simplification which we extend to compute these progressive sim-

plifications. Finally, in Section 2.4 we outline how aspects of this framework relate to the main

contributions of this thesis.

2.1 Minimum-link Simplification

In this thesis we are interested in the so called min-# problem, which is an optimization problem

that takes as input a polygonal curve C = 〈p1, . . . , pn〉 represented by a sequence of points in Rd
where d > 1, and an error bound ε ≥ 0. We wish to simplify this polygonal curve to a polygonal

curve S on which the following conditions hold:

• The size of S should be minimized, meaning |S| is minimal.

• S sufficiently approximates C, meaning D(C,S) ≤ ε, where D is an error function.

Different error functions D exist that define how the similarity, or “distance”, between polygonal

curves is determined or measured. Among these error functions are the Hausdorff distance [12],

and the Fréchet distance [4]. In this thesis, we will mostly consider the Hausdorff distance. How-

ever, most of these error measures are computed with the same time complexity, meaning that in

many cases any error measure can be used. To define the Hausdorff distance, we use p a P to

denote any point p that lies on polygonal curve P .

Hausdorff Distance: For any two polygonal curves P and Q, the Hausdorff distance H(P,Q) is

defined as:

H(P,Q) = max[H(P → Q),H(Q→ P )]

H(P → Q) = max
paP

min
qaQ

dist(p, q)

3



4 Chapter 2. Preliminaries

We use dist(x, y) to denote the Euclidean distance between points x and y.

Simply stated, the Hausdorff distance is the greatest of all the distances from a point on one

of the curves to the closest point on the other curve. These distances are visualized in Figure 2.1a

and Figure 2.1b. By limiting this distance to ε, all points of the simplification S must remain

within the tolerance region of C. This is visualized for a single line segment in Figure 2.1c.

P

Q

(a) H(P → Q)

P

Q

(b) H(Q→ P )

ε
ε

pi pj

(c) Tolerance region of (pi, pj)

Figure 2.1: The Hausdorff distance.

Note how the problem as defined so far has a solution set which is continuous, since points of

S may be chosen anywhere in Rd. The min-# problem is therefore typically simplified such that S
is a subsequence of C including p1 and pn. This has the advantage that there is a clear association

between segments of S and subcurves of C. Therefore, if S contains the line segment (pi, pj), we

want the subcurve of C from pi to pj to be close to this segment. This gives us the following set

of constraints:

• S is a subsequence of C, denoted S v C.
• The first and last point of C must be part of any simplification, thus p1, pn ∈ S.

• Any line segment (pi, pj) ∈ S sufficiently approximates the subsequence 〈pi, . . . , pj〉 v C. We

therefore have max(pi,pj)∈S D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε.
By redefining the error this way, we are more stringent on the shape of simplification S with respect

to the input curve C. For instance, by defining the Hausdorff distance globally, i.e. H(C,S) ≤ ε,

the closest point on C to any point on S can be picked anywhere on C, and vice versa. Therefore,

some edges of S may poorly approximate the corresponding subsequence on C, without violating

the maximum Hausdorff distance. This is illustrated in Figure 2.2.

This definition of the error on subsequences of C also facilitates area-based error measures,

such as the measures suggested by Daneshpajouh et al. [8]. These measures define the error of

line segment (pi, pj) ∈ S in terms of the area of the simple polygons formed by the intersections

of 〈pi, pj〉 and 〈pi, . . . , pj〉.

ε

(a) Polygonal curve C (b) Simplification S v C

Figure 2.2: An example where globally defining the Hausdorff distance gives a simplification where
the shape of C is lost. Note that H(C,S) ≤ ε, but max(pi,pj)∈S H(〈pi, . . . , pj〉, 〈pi, pj〉) > ε.

Another advantage of imposing a maximum error on each subsequence, is that most error

measures are considerably easier to compute when one of the polygonal curves is just a single line
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pi pj

≤ ε
≤ ε

≤ ε

(a) maxpk∈〈pi,...,pj〉 dist(pk, (pi, pj)) ≤ ε

pi pj

pk

u

v

pk+1

(b) dist(u, v) > H(〈pi, . . . , pj〉 → 〈pi, pj〉)

Figure 2.3: Computing the Hausdorff distance between 〈pi, pj〉 and 〈pi, . . . , pj〉.

segment. For example, we measure the Hausdorff distance between a line segment (pi, pj) ∈ S,

and the corresponding contiguous subsequence in C by measuring the distance from line segment

(pi, pj) to the furthest point in the subsequence 〈pi, . . . , pj〉. This is illustrated in Figure 2.3a. We

now prove that this indeed computes H(〈pi, . . . , pj〉, 〈pi, pj〉). For this, we define dist(pk, (pi, pj))

as the length of the line segment perpendicular to (pi, pj) which joins pk to (pi, pj). This distance

is also called the perpendicular distance from a point to a line.

Lemma 2.1. For any polygonal curve C = 〈p1, . . . , pn〉, the Hausdorff distance H(〈pi, . . . , pj〉, 〈pi, pj〉)
of any line segment (pi, pj) where 1 ≤ i < j ≤ n is equal to maxpk∈〈pi,...,pj〉 dist(pk, (pi, pj)).

Proof. We know that the shortest distance from a line segment (pi, pj) to a point pk a C is the

same as the shortest distance from (pi, pj) to a point pk ∈ C. This means we have:

H(〈pi, . . . , pj〉 → 〈pi, pj〉)
= max

xa〈pi,...,pj〉
min

ya (pi,pj)
dist(x, y)

= max
pk∈〈pi,...,pj〉

min
ya (pi,pj)

dist(pk, y)

= max
pk∈〈pi,...,pj〉

dist(pk, (pi, pj))

Now let us assume that H(〈pi, pj〉 → 〈pi, . . . , pj〉) > H(〈pi, . . . , pj〉 → 〈pi, pj〉). This means

that there is a point u a (pi, pj) for which there is a closest point v on some line segment

(pk, pk+1) in the subsequence 〈pi, . . . , pj〉, such that the distance between u and v is larger than

H(〈pi, . . . , pj〉 → 〈pi, pj〉). This situation is sketched in Figure 2.3b. Note that 〈pi, . . . , pj〉 can-

not pass through the illustrated circle with radius dist(u, v), since otherwise v is not the closest

point from u on 〈pi, . . . , pj〉. Furthermore, 〈pi, . . . , pj〉 cannot touch or cross the boundaries

sketched at the top and the bottom, because otherwise H(〈pi, . . . , pj〉 → 〈pi, pj〉) ≥ dist(u, v) >

H(〈pi, . . . , pj〉 → 〈pi, pj〉). Therefore, there is no conceivable configuration of 〈pi, . . . , pj〉. By

contradiction, we may thus conclude H(〈pi, pj〉 → 〈pi, . . . , pj〉) ≤ H(〈pi, . . . , pj〉 → 〈pi, pj〉).
Using the definition of the Hausdorff distance, we conclude H(〈pi, . . . , pj〉, 〈pi, pj〉) is equal to

maxpk∈〈pi,...,pj〉 dist(pk, (pi, pj)). �

Although the min-# problem is well defined for any number of dimensions, we will solely focus on

two-dimensional polygonal curves. We can now formally define the problem as follows:

Single Scale Min-#

Input: A polygonal curve C = 〈p1, . . . , pn〉 in R2, and an error bound ε ≥ 0.

Output: A polygonal curve S in R2 where S v C, such that |S| is minimal, and:

• p1 ∈ S and pn ∈ S.

• max(pi,pj)∈S D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε.
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2.2 Progressive Simplification

By extending the min-# simplification problem to multiple scales, we are concerned with finding

m simplifications 〈S1, . . . ,Sm〉 for m error bounds E = 〈ε1, . . . , εm〉 where εm > . . . > ε1 ≥ 0.

We can construct each simplification Sk by using any algorithm to solve Single Scale Min-#

for C and εk. However, by constructing each simplification independently, we run the risk that

some simplifications have a different shape than others. To facilitate interactive exploration of

these simplifications where one can seamlessly switch between different simplifications, we there-

fore desire some form of inter-consistency. More specifically, we require a mapping from each

subsequence of points in Si to a subsequence of points in Sj where i 6= j. The points shared

between any two simplifications thereby provide a frame of reference by which one can infer the

relationship between these simplifications.

S2 v S1

S1 v C

C

Figure 2.4: Mapping of subsequences of C across progressive simplifications.

We perform this mapping by enforcing monotonic containment on the points of each simpli-

fication, from Sm to S1. We thus require Si v Si−1 for all 1 < i ≤ m, and S1 v C. This way,

detail is progressively added to simplifications at lower scales. Figure 2.4 illustrates this monotonic

containment relation. We call each set of simplifications of C for E that adheres to this monotonic

containment relation a progressive simplification. The min-# progressive simplification problem

can be defined as follows:

Progressive Min-#

Input: A polygonal curve C = 〈p1, . . . , pn〉 in R2 and a sequence of error bounds E = 〈ε1, . . . , εm〉
where εm > . . . > ε1 ≥ 0.

Output: A sequence of polygonal curves 〈S1, . . . ,Sm〉 in R2 where Sm v . . . v S1 v C, such

that
∑m
i=1 |Si| is minimal, and for all 1 ≤ i ≤ m we have:

• p1 ∈ Si, and pn ∈ Si.
• max(px,py)∈Si D(〈px, . . . , py〉, 〈px, py〉) ≤ εi.

If we wish to prioritize the minimization of simplifications at specific scales, we can general-

ize Progressive Min-# such that we have a weight for every simplification which represents

the importance of the minimization of that simplification. We thus have a sequence of weights

W = 〈w1, . . . , wm〉 in R, where wi > 0 for all 1 ≤ i ≤ m. We now wish to minimize
∑m
i=1 wi|Si|.

We call this generalized problem Weighted Progressive Min-#.

So far we have considered discrete progressive simplifications, meaning we simplify for a given

set of error bounds. We may instead want to simplify continuously, capturing every possible level of

detail. We thus wish to find a simplification Sε for all 0 ≤ ε ≤ εz, where εz = D(〈p1, . . . , pn〉, 〈p1, pn〉),
which is the error of simplification 〈p1, pn〉. Note that monotonic containment is still imposed,

implying Sε′ v Sε for all ε′ > ε. The goal is to minimize the cumulative size of this continuous set
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of simplifications. We thus want to minimize
∫ εz
0
|Sε| dε. We call this continuous generalization

Continuous Progressive Min-#. Now let us prove that Continuous Progressive Min-#

can be reduced to Weighted Progressive Min-#.

Lemma 2.2. Given a polygonal curve C = 〈p1, . . . , pn〉, we can solve Continuous Progressive

Min-# by solving Weighted Progressive Min-# for
(
n
2

)
error bounds.

Proof. Assume we have the error D(〈pi, . . . , pj〉, 〈pi, pj〉) of every line segment (pi, pj) where j > i.

Let 〈ε1, . . . ε(n
2)
〉 be the sorted list of these errors in ascending order without duplicates. Note that

it is possible that εz < ε(n
2)

.

Now consider the claim Sε = Sεi for all ε ∈ [εi, εi+1). We know this holds, since assuming

Sε < Sεi would imply all Sε′ where ε′ ∈ [εi, ε] are not minimal. Therefore, we have∫ εz

0

|Sε| dε =

z−1∑
k=1

(εk+1 − εk)|Sεk |

Thus, we can solve Continuous Progressive Min-# by solving Weighted Progressive

Min-# for error bounds E = 〈ε1, . . . εz〉 and weights W = 〈w1, . . . , wz〉, where wi = εi+1 − εi for

all 1 ≤ i < z.

2.3 Computational Framework

In order to solve the problems stated in the previous sections, we use a computational framework

proposed by Imai and Iri [16]. This framework uses the notion of a shortcut, which is defined as

follows:

Shortcut: For any polygonal curve C = 〈p1, . . . , pn〉 and an error bound ε ≥ 0, any line segment

(pi, pj) where j > i is a shortcut of C for ε if and only if D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε.

Intuitively, a shortcut (pi, pj) is a line segment that sufficiently approximates all points in C
between pi and pj , given an error bound ε. Hence, a shortcut of C for ε is a line segment

that can be included in any simplification S with an error bound of at most ε. Note how for

any 1 ≤ i < m, (pi, pi+1) is always a shortcut, regardless of C and ε, because we always have

D(〈pi, pj〉, 〈pi, pj〉) = 0.

The computational framework defines a shortcut graph as a graph that contains all shortcuts

for a given error bound as its edges. We formally define this graph as follows:

Shortcut Graph: Given a polygonal curve C = 〈p1, . . . , pn〉 and an error bound ε ≥ 0, a shortcut

graph is a graph G(C, ε) = (V,E), where V = C and E = { (pi, pj) | (pi, pj) is a shortcut of C for ε }.

We can solve Single Scale Min-# by finding a shortest path from p1 to pn in G(C, ε) using a

breadth-first search [18] in O(n2) time. An example of each step of the computational framework

is shown in Figure 2.5.

To prove correctness of this framework, we first show that any simplification it creates is valid,

meaning that each of its edges adheres to the error bound. We furthermore prove that it is minimal

by showing that there cannot be another valid simplification that is smaller.

Lemma 2.3. For any polygonal curve C = 〈p1, . . . , pn〉 and an error bound ε ≥ 0, if π is a path

in G(C, ε), then max(pi,pj)∈π D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε.

Proof. For any (pi, pj) ∈ π, we know D((pi, . . . , pj), 〈pi, pj〉) ≤ ε, since (pi, pj) ∈ G(C, ε). Since

(pi, pj) is an arbitrary edge in π, we conclude max(pi,pj)∈π D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε. �
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S

G(C, ε)

C

Figure 2.5: Simplification by finding shortest paths in shortcut graphs.

Lemma 2.4. For any polygonal curve C = 〈p1, . . . , pn〉 and an error bound ε ≥ 0, any shortest

path π from p1 to pn in G(C, ε) is at most as long as any smallest polygonal curve S for which

max(pi,pj)∈S D(〈pi, . . . , pj〉, 〈pi, pj〉) ≤ ε, S v C and p1, pn ∈ S.

Proof. Consider any edge (pi, pj) ∈ S. For this edge we have D((pi, . . . , pj), 〈pi, pj〉) ≤ ε. There-

fore, (pi, pj) must be a shortcut of C for ε which means that (pi, pj) is an edge in G(C, ε). Because

(pi, pj) is an arbitrary link in S, the polygonal curve S must be a path in G(C, ε). Because π is a

shortest path from p1 to pn in G(C, ε), we conclude |π| ≤ |S|. �

2.4 Contributions

Throughout this thesis we discuss different adaptions of the computational framework described in

Section 2.3. In Chapter 3, we investigate an alternative representation of the shortcut graph called

a shortcut interval set. In practice, this representation has sub-quadratic storage requirements

which allows us to find shortest paths in O(n log n) time. This is an improvement over using

breadth-first search in an explicit representation of the shortcut graph using O(n2) time and

space. Experimental evaluation reveals that a significant improvement is realized by using shortcut

interval sets, both in terms of memory usage and running time.

In Chapter 4, we discuss how shortcut graphs can efficiently be constructed for many different

error bounds using the Hausdorff distance. We present an algorithm that computes for each line

segment the maximum error at which it is a valid shortcut. These errors can be used to efficiently

construct the shortcut graph associated with any error bound. This algorithms runs in O(n2 log n)

time, which is an improvement over O(n3) time using existing techniques by Imai and Iri [16].

The results indicate that this algorithm yields benefits over existing techniques, but only when

constructing a large number of shortcut graphs. This algorithm is therefore only suitable when

simplifying for many different levels of detail.

Finally, In Chapter 5 we elaborate on how we can use shortcut graphs to compute progress-

ive simplifications. We present the first progressive min-# simplifications algorithm running in

O(n3m) time. We furthermore propose two O(n2m)-time greedy algorithms which do not strictly

minimize the cumulative simplification size. Analysis of the performance of these algorithms

in practice reveals that the optimal progressive simplification algorithm produces simplifications

that are comparable in size to minimal non-progressive simplifications. However, we found that

this algorithm is unscalable to large input curves due to its cubic time complexity. One of the

greedy algorithms was shown to be a good alternative which produces near-minimal progressive

simplifications.



Chapter 3

Exploiting Real-World Structures in
the Shortcut Graph

As outlined in Section 2.3, the data structure central to the computational framework is the

shortcut graph. This graph encodes all contiguous subsequences of C which can be sufficiently

approximated with a single line segment called a shortcut. A natural way of implementing a

graph is by storing all edges incident to any node explicitly. We refer to shortcut graphs that

are implemented this way as explicit shortcut graphs. In this chapter, we present how common

patterns in real-world data can be exploited to obtain a compressed representation of the shortcut

graph, called a shortcut interval set. Aside from lowering memory usage, this representation aims

to optimize running time of finding shortest paths in practice.

We open this chapter with an outline of the aforementioned patterns and how they can be used

to compress the shortcut graph to a sub-quadratic representation (Section 3.1). Next, we address

how this new representation can be integrated with the computational framework to find shortest

paths (Section 3.2). Finally, we experimentally evaluate how effective the compression of this new

representation is in practice (Section 3.3).

3.1 Shortcut Intervals

As outlined in Chapter 1, polygonal curve simplification is mostly applied to spatial data, such as

line features on a map, or movement trajectories of migratory animals. Most types of spatial data

are structured, and follow the following common intuitions:

• Most consecutive points are near one another.

• Most consecutive line segments have similar heading.

Whenever these patterns are present, we expect most consecutive points pi and pj to share points

with which they form shortcuts. This means that when (px, pi) is a shortcut for some point px,

we expect (px, pj) to be a shortcut as well. Similarly, if (pi, py) is a shortcut for some point py, we

expect (pj , py) to be a shortcut. This yields contiguous subsequences of C with which pi forms a

sequence of shortcuts. This is illustrated in Figure 3.1. We call each such subsequence a shortcut

interval, which is defined as follows:

Shortcut Interval: For any polygonal curve C = 〈p1, . . . , pn〉, an error bound ε ≥ 0, and

1 ≤ i < x ≤ y ≤ n, the interval [x, y] is a shortcut interval for pi and ε if and only if for

all x ≤ z ≤ y, (pi, pz) is a shortcut of C for ε, and [x, y] is maximal.

9
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pi

Figure 3.1: Shortcut intervals associated with some point pi.

We combine these shortcuts intervals into sets called shortcut interval sets, which are defined as

follows:

Shortcut Interval Set: For any polygonal curve C = 〈p1, . . . , pn〉 and an error bound ε ≥ 0, a

shortcut interval set of C for ε is a set I(C, ε) = 〈I1(ε), . . . , In(ε)〉 where for all 1 ≤ i ≤ n, Ii(ε) is

the collection of all shortcut intervals [x, y] for pi and ε.

Note that a shortcut interval set is a minimally sized set of shortcut intervals that covers all

shortcuts. We can visualize a shortcut interval set in a matrix where the rows and columns

correspond to the points in C, and the shading of each cell at position i, j corresponds to whether

(pi, pj) is a shortcut. In Figure 3.2, we can see such matrices for four different error bounds. Note

how regardless of the error bound, every row and column only has a few black regions. This means

we typically have |Ii| = O(1) shortcut intervals for any pi ∈ C. This implies that I(C, ε) has a

storage complexity of O(n) in practice, regardless of ε. This is an order of magnitude smaller than

the explicit representation of the shortcut graph G(C, ε), which has a storage complexity of O(n2).

Similar compression techniques were used by Alewijnse et al. [3] to speed up trajectory seg-

mentation.

(a) I(C, ε1) (b) I(C, ε2) (c) I(C, ε3) (d) I(C, ε4)

Figure 3.2: Matrix visualization of the shortcut interval sets of a polygonal curve composed of 757
points for four different error bounds. Each black cell represents a shortcut.

3.2 Finding Shortest Paths

Let us now discuss how we can find shortest paths from a source node ps to a target node pt in a

shortcut interval set. On explicit shortcut graphs, this is most efficiently computed using breadth-

first search in O(n2) time [18]. In this section we elaborate on how we can exploit shortcut intervals

to improve this running time in practice.

We construct a balanced binary search tree T containing every point pi ∈ 〈ps, . . . , pt〉 ordered

by the index i of any point pi. Consider we have a point pb ∈ T where all points in 〈pa, . . . , pc〉
are rooted at pb. We wish to annotate pb with the following two paths:
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Ii(ε)

Figure 3.3: Finding the shortest path from pi to pt by means of range queries. For every grey node
we consider the subtree annotation, and for every white node we consider the node annotation.

• A shortest path from pb to pt.

• A shortest path from any point in 〈pa, . . . , pc〉 to pt.

We therefore have an annotation of every node, and of every subtree. We represent the subtree

annotation using the path’s first point (some point in 〈pa, . . . , pc〉) and the path’s length. The

node annotation is represented using the path’s second point (the point after pb) and the path’s

length. This way, the annotations encode the next step in a shortest path to pt. Any shortest path

can therefore be reconstructed by following the annotations from node to node until we reach pt.

The complete annotation of T is achieved by inserting every point pi in C from pt down to

ps in sequence, and obtaining the node annotation of pi using a customized range query on the

binary search tree for every shortcut interval in Ii(ε). Every range query for shortcut interval

[x, y] ∈ Ii(ε) finds shortest path candidates from pj to pt where (pi, pj) is a shortcut of C for ε and

x ≤ j ≤ y. Specifically, we start at the root node of T , and for every node pb where all nodes in

〈pa, . . . , pc〉 are rooted at pb, we do the following:

• If x ≤ a ≤ c ≤ y, consider the subtree annotation of pb.

• Otherwise:

– If x ≤ b ≤ y, consider the node annotation of pb.

– If x < b and y ≥ a, traverse to the left child of pb, containing points pi where i < b.

– If y > b and x ≤ c, traverse to the right child of pb, containing points pi where i > b.

In the first case we have x ≤ a ≤ c ≤ y, and therefore all points in 〈pa, . . . , pc〉 lie in the shortcut

interval [x, y], meaning that the subtree annotation of pb is a path that can be prepended with pi
to form a path from pi to pt. By performing these range queries, we therefore efficiently collect the

shortest possible paths from pi to pt via all shortcuts in Ii(ε). An example is given in Figure 3.3.

After all candidate paths are found, we choose the path π with the shortest length. We prepend

π with pi, and use this path as the node annotation of pi. The subtree annotation of pi is efficiently

maintained using the node annotation of pi and the subtree annotation of both children of pi.

After all points are inserted, we reconstruct the shortest path from ps to pt using the node

annotation of ps.
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Running time Each range query on some shortcut interval [x, y] follows a path down the search

tree T to locate a subtree which has px as a minimum. Similarly, we locate a subtree which has

py as a maximum. We therefore only traverse the children of at most two nodes at any level of

the binary search tree. This means that on each level of the tree, we spend O(1) time. Since

the binary search tree is balanced, it has a height of O(log n). Each range query therefore takes

O(log n) time.

Furthermore, note that annotating the tree does not influence the asymptotic running time of

inserting a node. This is because any subtree annotation of some node only has a possible impact

on the subtree annotation of all its ancestors. The subtree annotation of a node is maintained

in O(1) by checking the subtree annotation of both its children. Because the tree is balanced,

any node has at most O(log n) ancestors, implying that updating these annotations takes at most

O(log n) time.

We conclude that each range query and insertion takes O(log n) time in the worst case. We

know that for all s ≤ i ≤ t, we typically have |Ii(ε)| = O(1), and we therefore perform O(1) range

queries for every point in practice. Since we may need to insert O(n) points, finding a shortest

path in a shortcut interval set therefore takes O(n log n) time in practice. In the worst case, we

have O(n2) shortcut intervals in total, in which case the running time is O(n2 log n).

Optimization Despite the expectation that |Ii(ε)| = O(1) for any point pi, it is possible that

some shortcut intervals in Ii(ε) are infinitesimal. In the worst case, a shortcut interval is so small

that performing the range query takes more time than simply checking the node annotation of all

points in the interval. Therefore, if a shortcut interval [x, y] ∈ Ii(ε) is smaller than O(log n), we

can save time by doing a brute force determination of the corresponding shortest path in O(y−x)

time.

Note how this influences the worst case number of range queries from O(n) to O( n
logn ). Because

each range query takes O(log n) time, we conclude that this optimization brings the worst case

running time down to O(n2).

3.3 Experimental Evaluation

Figure 3.4: Migrating griffon vulture.

The performance of using shortcut interval sets to find

shortest paths depends highly on the signature of C,
and the signature of the shortcut intervals contained in

I(C, ε). In this section we therefore investigate both the

impact of using shortcut interval sets for a variable length

of input curve C, and for a variable error bound ε.

One motivation for progressively simplifying poly-

gonal curves is to visualize and interactively explore

movement trajectories on multiple scales. All algorithms

and techniques presented in this thesis are therefore

experimentally evaluated using a movement trajectory.

More specifically, we use a movement trajectory of a

griffon vulture migrating across south Europe by Shmidt-

Rothmund [21]. This trajectory is shown on a geographic

map in Figure 3.4. This is a trajectory composed of

340.000 points with street-level detail, starting in south

Germany and ending in southern Spain.

Shortcut graphs in the worst case have
(
n
2

)
edges. This means that explicit shortcut graphs in

the worst case require quadratic memory. In order to have experiments that are scalable to dense

shortcut graphs, we therefore reduce the number of the points in the input curve. We do this by
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only including the desired number of points at the beginning of the curve.

Furthermore, all experiments presented in this thesis are performed on a 64-bit Intel Core

i7-2630QM machine running Windows 10 with 8 gigabytes of DDR3 SDRAM. The source code is

written in C# 6.0 and compiled for 64-bit CPU’s.

3.3.1 Performance by Curve Length

In this section we evaluate how the length of the input curve impacts the comparative asymptotic

performance of using shortcut interval sets instead of explicit shortcut graphs in practice. For this,

we choose the error bound for every length of the input curve such that the resulting shortcut

graph includes the shortcuts with the 50% smallest errors. The resulting shortcut graph will

therefore always have a density of 50%. We choose this density so that there are many shortcuts,

yet shortest paths are non-trivial.

We experimentally compare the memory footprint by comparing the number of shortcuts and

the number of shortcut intervals. Furthermore, we compare the asymptotic running time in

practice of using breadth-first search (BFS) on explicit shortcut graphs, and range queries on

shortcut interval sets. The goal of each running-time experiment is to find a shortest path from

p1 to pn.

The range queries on shortcut intervals are performed using left-leaning red-black trees [22].

The red-black tree [7] is a popular type of self-balancing binary search tree. Although left-leaning

red-black trees perform worse compared to regular red-black trees, they are significantly easier to

implement and achieve the same asymptotic time-complexity for each operation.

The results of these experiment are presented in Table 3.1.

Length of the input curve

500 1000 2000 3000 4250 5500 7000

Breadth-First Search (sec.) 0.003 0.011 0.049 0.104 0.209 0.379 0.588

Range Queries (sec.) 0.005 0.011 0.027 0.037 0.059 0.078 0.097

Shortcuts (×105) 6.287 25.073 100.151 225.225 451.878 765.613 1225.52

Shortcut Intervals (×105) 0.104 0.163 0.314 0.303 0.699 0.694 0.789

Table 3.1: Running time in seconds of finding a shortest path from p1 to pn, and number of shortcuts
and shortcut intervals for various lengths of the input curve, on a shortcut graph with a density of 50%.

A first glance at these results reveals that the number of shortcuts grows quadratically in

the length of the input curve, whereas the number of shortcut intervals grows linearly, and non-

monotonically. We confirm this insight by plotting the number of shortcuts/shortcut intervals

against the length of the input curve, as shown in Figure 3.5.

Recall that by using range queries to find shortest paths in shortcut interval sets, we spend

time relative to the number of shortcut intervals. Breadth-first search on the other hand spends

time for every shortcut it traverses. To investigate how this different allocation of time determines

the overall running time of each approach, consider Figure 3.6. We observe that the running time

of breadth-first search is quadratic in the length of the input curve, whereas the range queries

exhibit near-linear performance.

In conclusion, the results indicate the linear memory footprint of shortcut intervals sets holds

true in practice, which in turn yields a significant improvement to the time required to find shortest

paths. We foresee this significant compression of the shortcut graph to be an important stepping

stone towards constructing min-# simplifications in near-linear time on large data.
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Figure 3.5: Number of shortcuts and shortcut intervals in a shortcut graph with a density of 50% for
various lengths of the input curve.

Figure 3.6: Running time of finding a shortest path from p1 to pn in a shortcut graph with a density
of 50% for various lengths of the input curve.

3.3.2 Performance by Error Bound

The level of compression that can be obtained by using shortcut interval sets depends highly on

the density of the shortcut graph. This phenomenon is observable in Figure 3.2. As the error

bound grows, the density of the shortcut graph grows, which typically means that the shortcut

intervals become coarser. An extreme example of this is a complete shortcut graph, which can be

represented with n− 1 shortcut intervals [i+ 1, n] for every point pi ∈ C where 1 ≤ i < n.

We perform the same experiments as in Section 3.3.1, except that we vary the error bound

instead of the length of the input curve. We fix the length of the input curve to 10.000 points.

The results obtained are given in Table 3.2. Note that the last error bound ε = 0.095 yields a

complete shortcut graph.

Inspection of these results reveals that the number of shortcut intervals sporadically increases

and decreases. As described earlier, this is related to the growth in coarseness among the shortcut

intervals as the error bound grows. The relation between the shortcut graph complexity and the

error bound is shown in Figure 3.7. We observe monotonic growth in the number of shortcuts,

whereas the number of shortcut intervals peeks around ε = 0.05, which corresponds to a shortcut

graph density of 80%.

A plot of the running time of both path finding algorithms is given in Figure 3.8. We observe

how for small error bounds (ε < 0.00015), breadth-first search on explicit shortcut graphs is faster

compared to using range queries on shortcut interval sets. For these error bounds, there are

few shortcuts, and path finding via range queries therefore wastes time inserting n points in the

annotated balanced binary search tree, without making use of the tree.

To analyze how the shortest path finding performance relates to the number of shortcuts and
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Error bound

0.0001 0.001 0.01 0.03 0.06 0.08 0.095

Breadth-First Search (sec.) 0.116 0.465 0.77 1.234 2.367 2.619 2.623

Range Queries (sec.) 0.161 0.183 0.187 0.177 0.17 0.152 0.138

Shortcuts (×106) 2.313 9.682 15.684 24.044 44.991 49.984 49.995

Shortcut Intervals (×106) 0.0197 0.01385 0.01520 0.0151 0.0164 0.0100 0.0100

Table 3.2: Running time in seconds of finding a shortest path from p1 to pn, and number of shortcuts
and shortcut intervals for 10.000 points and various error bounds.

Figure 3.7: Number of shortcuts and shortcut intervals for 10.000 points and various error bounds.

Figure 3.8: Running time of finding a shortest path from p1 to pn for 10.000 points and various error
bounds.

shortcut intervals, consider Figure 3.9. Here we see the time spent per shortcut and the time spent

per shortcut interval, as the error bound grows. In Figure 3.9a, we see that breadth-first search

always spends roughly the same amount of time per shortcut. We observe that for range queries

on shortcut intervals, the time spent per shortcut decreases as the error bound – and thus the

density of the shortcut graph – grows.

In Figure 3.9b we see that finding shortest paths using range queries spends constant time

on every shortcut interval, regardless of the error bound. Breadth-first search on the other hand
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(a) Time per shortcut (b) Time per shortcut interval

Figure 3.9: Time spent per shortcut and per shortcut interval in microseconds for finding a shortest
path from p1 to pn for 10.000 points and various error bounds.

grows to be around 19 times slower per shortcut interval on a complete shortcut graph.

We conclude that shortcut interval sets yield significant benefits both in space- and time

complexity for any error bound compared to explicit shortcut graphs. The compression is most

effective for larger error bounds that yield dense shortcut graphs. However, for smaller error

bounds, the running time of finding shortest paths is highly variable due to the unstable number

of shortcut intervals. For highly sparse shortcut graphs, breadth-first search is faster than using

range queries on shortcut interval sets, due to the small size of the shortcut intervals.



Chapter 4

Finding Shortcuts for Multiple Scales

Now that we have investigated how to represent the shortcut graph, let us focus on its construc-

tion. In this chapter, we will solely consider construction of shortcut graphs under the Hausdorff

distance. As mentioned in Chapter 2, the first step of the computational framework by Imai and

Iri [16] is to construct a shortcut graph for a polygonal curve C using a single error bound ε. This

problem can be described as follows:

Shortcuts Single Scale

Input: A polygonal curve C = 〈p1, . . . , pn〉 in R2 and an error bound ε ≥ 0.

Output: A shortcut graph G(C, ε).

However, to facilitate progressive simplification, we wish to construct a sequence of shortcut graphs

for a set of error bounds E = 〈ε1, . . . , εm〉. We call the corresponding problem Shortcuts Multi-

Scale. A naive solution for this problem would be to use any algorithm for solving Shortcuts

Single Scale m times to find each shortcut graph independently. However, in the presence of

many scales, such an independent construction is likely to cause overhead. We therefore instead

determine for each shortcut the maximum error at which it is valid. This problem is defined as

follows:

Shortcuts All Scales

Input: A polygonal curve C = 〈p1, . . . , pn〉 in R2.

Output: A set Emax = { D(〈pi, . . . pj〉, 〈pi, pj〉) | 1 ≤ i < j ≤ n }.

We call D(〈pi, . . . pj〉, 〈pi, pj〉) the shortcut error of (pi, pj). The solution to this problem can be

used to construct a shortcut graph for every error bound εk ∈ E . We do this by filtering the error

values in Emax, which takes O(1) time for each potential shortcut. We can thus solve Shortcuts

Multi-Scale in O(n2m) time from Emax.

We first outline a widely used algorithm for solving Shortcuts Single Scale (Section 4.1).

Next, we propose a new algorithm for solving Shortcuts All Scales (Section 4.2). Finally, we

experimentally evaluate how these algorithms compare in practice (Section 4.3).

4.1 Independent Construction

A well known algorithm for the construction of a single shortcut graph using a fixed error bound

under the Hausdorff distance was proposed by Chin and Chan [6]. This algorithm maintains a

geometric data structure for every point pi ∈ C that is capable of sequentially determining for

any point pj whether (pi, pj) is a shortcut in O(1). One can visualize this data structure as a pie

wedge w that has pi at its center. For every point pj , (pi, pj) is a shortcut if and only if pj is

17
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wi+2

wi+1

pi

pi+1

pi+2

w

pi+3

ε

Figure 4.1: Finding shortcuts using wedges.

inside this wedge. After determining this, we intersect the shape of w with the shape of pie wedge

wj . The pie wedge wj has pi at its center, and is the smallest wedge that fully includes a circle

with radius ε which center is located at pj . If the resulting intersection of w with wj is an empty

shape, we know that there is no shortcut (pi, pk), where k > j. An example of this algorithm is

shown in Figure 4.1. Here, (pi, pi+1) and (pi, pi+3) are shortcuts, and (pi, pi+2) is not, as it lies

outside of wi+1.

However, there is a degenerate case, which is shown in Figure 4.2. Here, we can see that pi+4

is inside the wedge w. However, it is clear to see that dist(pi+3, (pi, pi+4)) � ε, and thus using

Lemma 2.1, we know that (pi, pi+4) is not actually a shortcut.

Chin and Chan [6] suggested these cases should be handled by first traversing C from start to

end, producing for every point pi all shortcuts (pi, pj) as described above. Next, we do the same

but for a reverse traversal of C, producing for every point pj all shortcuts (pi, pj). Finally, these

two sets of shortcuts are intersected, which yields the set of edges for shortcut graph G(C, ε). For

the traversal of C in the forward direction, we provide pseudo code in Algorithm 4.1.

pi+1

pi

pi+2

pi+3pi+4

w

Figure 4.2: A degenerate case where pi+4 is in w, yet (pi, pi+4) is not a shortcut.

Integration of shortcut intervals Recall that in the worst case, there are
(
n
2

)
shortcuts.

Therefore, intersecting two sets of shortcuts as described earlier takes O(n2) time. We can op-

timize this by using shortcut interval sets, since intersecting any two intervals takes O(1) time,

and we have O(n) shortcut intervals in practice. Thus, we can intersect two shortcut interval

sets I ′(C, ε) = 〈I ′1(ε), . . . , I ′n(ε)〉 and I ′′(C, ε) = 〈I ′′1 (ε), . . . , I ′′n(ε)〉 in O(n) time by progressively

scanning I ′i(ε) and I ′′i (ε) for intersections in O(1) time for every pi ∈ C. An example of such an

intersection of I ′i(ε) and I ′′i (ε) is shown in Figure 4.3. Note that in the worst case we have O(n2)

shortcut intervals, in which case the intersection takes O(n2) time.
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Algorithm 4.1 ChinChan(C, ε)
1: for i← 1 to n− 1 do
2: w ← Full plane
3: for j ← i+ 1 to n do
4: if pj inside w then
5: Add (pi, pj) to G(C, ε)
6: end if
7: Intersect w with wj
8: if w is empty then
9: break

10: end if
11: end for
12: end for
13: return G(C, ε)

I ′i(ε)

I ′′i (ε)

Ii(ε)

Figure 4.3: Intersecting I ′(C, ε) and I ′′(C, ε) to obtain I(C, ε) for some point pi.

Running time This algorithm spends O(1) time for every shortcut. Therefore, it solves Short-

cuts Single Scale in O(n2) time, since there is a worst case number of
(
n
2

)
shortcuts.

This algorithm has excellent performance on most real-world data sets when ε is small, because

of its ability to prune significant portions of line segments whenever w becomes empty. However,

it cannot efficiently be extended to facilitate construction of shortcut graphs for multiple scales,

since wedge w can only be used to determine the validity of shortcuts for a single error bound.

4.2 Construction for Arbitrary Scale

Imai and Iri [16] used a brute-force approach of building the shortcut graph under the Hausdorff

distance, which can be extended to solve Shortcuts All Scales. The algorithm computes the

Hausdorff distance for every line segment (pi, pj) where j > i + 1 by explicitly calculating the

maximum distance from any point pk to (pi, pj) for all i < k < j . Recall that we can calculate

the Hausdorff distance this way, as proven by Lemma 2.1.

This algorithm spends O(j−i) time for any line segment (pi, pj) to determine its furthest point

distance, where 1 ≤ i < j ≤ n. Because there are
(
n
2

)
such line segments, this algorithm solves

Shortcuts All Scales with a running time of O(n3).

In this section we discuss how we can improve the running time of this algorithm by determining

the shortcut error of every line segment (pi, pj) in O(log(j− i)) time. We do this by maintaining a

convex hull CH ⊆ C for any pi ∈ C in which we incrementally insert all points pj ∈ C where j > i.

After inserting some point pj , we find extreme points Xij
t and Xij

b on the convex hull using

the upward normal ~ni,j and downward normal −~ni,j of line segment (pi, pj). An extreme point of

a convex hull in the direction of some vector is defined as follows:



20 Chapter 4. Finding Shortcuts for Multiple Scales

pi pj

−~ni,j

~ni,j

Xij
t

Xij
b

(a) Extreme points of (pi, pj)

pi

pj

L R

T

B

Xij
t

Xij
b

Xij
l Xij

r

(b) Regions of (pi, pj)

Figure 4.4: Extreme point queries on the convex hull of 〈pi, . . . , pj〉.

Extreme Point: For any convex hull CH = 〈q1, . . . , q`〉, an extreme point of CH in the direc-

tion of a vector ~n is any point x ∈ CH for which there is no point y ∈ CH such that ~n ·(~y−~x) > 0.

An example of these extreme points is shown in Figure 4.4a. Here we see a line through Xij
t parallel

to (pi, pj). The point Xij
t is an extreme point for ~ni,j , since all points in CH (and therefore all

points in C) are below the line through Xij
t with normal ~ni,j .

Although finding both extreme points may seem sufficient to find the furthest point from a

given line segment (pi, pj), it is not when there are points in the subsequence 〈p1, . . . , pj〉 that

lie to the left of pi or to the right of pj within the reference frame of (pi, pj). This is illustrated

in Figure 4.4b, where we separate the area around the line segment (pi, pj) into regions: T (op),

B(ottom), L(eft) and R(ight). As shown, the extreme points of (pi, pj) are Xij
t and Xij

b , but Xij
l

and Xij
r are furthest away from (pi, pj). Using extreme point queries, we therefore only find the

furthest points in regions T and B. In order to expand the search area to R and L, we need a

technique for finding the furthest point Xij
l from pi in L, and the furthest point Xij

r from pj in

R. This gives us Algorithm 4.2.

Algorithm 4.2 ShortcutsConvexHull(C)
1: for i← 1 to n− 1 do
2: CH ← Empty convex hull
3: Insert pi into CH
4: for j ← i+ 1 to n do
5: Insert pj into CH

6: Xij
t ← Extreme point of CH in the direction ~ni,j

7: Xij
b ← Extreme point of CH in the direction −~ni,j

8: Xij
l ← Furthest point from pi in CH in region L of (pi, pj)

9: Xij
r ← Furthest point from pj in CH in region R of (pi, pj)

10: Emax[i][j]← max[dist(Xij
t , (pi, pj)), dist(X

ij
b , (pi, pj)), dist(X

ij
l , pi), dist(X

ij
r , pj)]

11: end for
12: end for
13: return Emax

In order to obtain the desired running time of O(log(j − i)) for any line segment (pi, pj), we

need to be able to do all queries and insertions in CH in O(log(j − i)) time. To achieve this, we

separate the convex hull into a top hull CHt and a bottom hull CHb and represent each using a

balanced binary search tree without duplicates ordered by the x-coordinates of its points. This

allows for finding Xij
t and Xij

b using a binary search on CHt and CHb respectively. The insertion
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of any point pj into CH is performed by an insertion of pj in both CHb and CHt. Finally, we

annotate the nodes of the search trees associated with CHt and CHb, and perform a customized

range query on these trees to obtain Xij
l and Xij

r . Hence, Xij
l is selected from two furthest point

candidates Xij
tl and Xij

bl from CHt and CHb respectively. Similarly, Xij
r is obtained from two

candidates Xij
tr and Xij

br.

We now discuss the details of each operation. We limit our discussion to the top hull CHt =

〈q1, . . . , q`〉, since all operations on CHb are analogous.

4.2.1 Operations

Inserting pj Insertion into the top hull CHt of a point pj is performed by finding the left-most

point ql ∈ CHt, and the right-most point qr ∈ CHt such that the line segments (ql, pj) and (qr, pj)

do not pass through CHt. After we find these two points, we remove all points on the hull in the

subsequence 〈ql+1, . . . , qr−1〉 and insert pj in between ql and qr. Note how this extends the area

of the convex hull while maintaining its convexity.

We can find ql and qr by doing a binary search on the upward normals of the line segments of

CHt. For example, the binary search for qr works by finding the right-most point so that the angle

of ~nr,j is in between the angles of ~nr−1,r and ~nr,r+1. Since the hull is convex, as r increases, ~nr−1,r
and ~nr,r+1 rotate monotonically clockwise, and ~nr,j rotates monotonically counter-clockwise. At

some point the angles of these vectors must converge, and thus a binary search will succeed if qr
exists.

An example of inserting pj into CHt is shown in Figure 4.5a. Note how the point between ql
and qr is removed as a result of the insertion and how the convexity of CHt is preserved.

If neither ql nor qr is found during the binary search, this implies that pj must lie inside the

convex hull, in which case we do not insert pj . If only ql was found, we remove all point on the

hull after ql and insert pj at the end. We do the reverse when only qr is found.

pj

ql

qr

(a) Insertion pj in between pl and pr

pi

pj

Xij
t

~ni,j

(b) Extreme point in T for (pi, pj)

Figure 4.5: Binary search on the convex hull using normals.

Finding Xij
t and Xij

b The extreme point queries in T and B are similar to insertions, and also

perform a binary search on the normals of the line segments of the convex hull. Specifically, we

find Xij
t in CHt using upward normal ~ni,j of line segment (pi, pj), and we find Xij

b in CHb using

downward normal −~ni,j . This is illustrated for Xij
t in CHt in Figure 4.5b.

Finding Xij
l In order to efficiently determine Xij

l , we annotate the nodes of the binary search

tree of CHt and CHb. We annotate any node qx ∈ CHt rooted at subtree Tx with the furthest

point from pi in Tx. An example of such an annotation of the binary search tree of CHt is shown

in Figure 4.6. We now discuss how we can find Xij
tl in CHt.



22 Chapter 4. Finding Shortcuts for Multiple Scales

pi

pjq1

q2

q3 q4 = Xij
tl

q6

q4

q5

q6

q3

q2

q1

L

q1

q3

q6

q6

q5q3

q5

Figure 4.6: CHt and its annotated binary search tree.

By annotating the search tree of CHt in this manner, we are able to find Xij
tl using a customized

range query. We do this by traversing the binary search tree and finding all nodes for which all

descendant nodes correspond to points that lie inside L. We then use the annotated point of each

such node as a candidate for furthest point from pi.

We start at the root of the tree, and for every node qx annotated with point qa rooted at

subtree Tx = 〈ql, . . . , qr〉, we do the following:

• If both ql and qr lie inside L, consider subtree annotation qa as a furthest point candidate.

• Otherwise:

– If qx lies inside L, consider qx as a furthest point candidate.

– If either ql or qr lies inside L, traverse to both children of qx.

Note that we only check whether left-most point ql in Tx, right-most point qr in Tx, and qz lie

inside L. This is an O(1) operation. The intuition is that in most cases, if the the start and end of

a subsequence of points on the hull are inside L, then so are all other points in that subsequence,

due to the convexity of the hull. However, this is not always the case when pi lies horizontally

between ql and qr. In this scenario, we need to be aware of the following two degenerate cases:

• Figure 4.7a: neither ql nor qr lies inside L, and pj lies below pi. Only qx is considered for

furthest point from pi. However, the furthest point from pi in L may be some other point

in Tx and is therefore potentially missed.

• Figure 4.7b: both ql and qr lie inside L, and pj lies above pi. We obtain the annotation of

qx, which is the furthest point from pi in Tx. However, not all points in Tx lie inside L.

We handle both cases by consdering the node annotation of qx and traversing to both children.

pi

pj
ql

qx

qr

L

(a) pj below pi, and ql, qr not in L

pi

pj

ql

qx

qrL

(b) pj above pi, and ql, qr both in L

Figure 4.7: Degenerate cases where pi lies horizontally between ql and qr.
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Finding Xij
r Note that we traverse C from start to end, and can therefore not directly apply

the same approach for finding Xij
l to find Xij

r . We instead apply the same technique used by

ChinChan (Algorithm 4.1), which is to run the algorithm a second time using a reversed traversal

of C. This means we defer the calculation of the shortcut error until after all furthest point

candidates are found.

During the forward traversal of C, we obtainXij
t , X

ij
b andXij

l at every iteration, whereas during

the reverse traversal we only obtain Xij
r at every iteration. After all candidates are found for every

line segment, we compute the shortcut error as stated on line 10 of ShortcutsConvexHull.

4.2.2 Running Time

Note how the annotation of the convex hull is much like the annotation of the binary search tree

used for finding shortest paths in shortcut interval sets (see Section 3.2). Therefore, the same

arguments about running time apply. Because both CHt and CHb have at most O(j − i) points

when inserting pj , all binary search tree operations run in O(log(j − i)) time.

Due to the convexity of the hull, all candidates for furthest point from pi in L or from pj in

R lie on at most one subsequence of points on the convex hull, as shown in Figure 4.8a. The

degenerate case shown in Figure 4.7b is the only exception, where there are candidates in two

subsequences. However, these subsequences are on both extremes of the tree, as illustrated in

Figure 4.8b. For this case we therefore also traverse the children of at most two nodes at each

level of the tree. Therefore, the range queries have a time complexity of O(log(j − i)).
We conclude ShortcutsConvexHull solves Shortcuts All Scales with a running time

of O(n2 log n).

(a) Single subsequence (b) Two subsequences on both extremes

Figure 4.8: Subtrees of CHt containing closest point candidates for pi in L.

4.2.3 Correctness

Consider we have a line segment (pi, pj) ∈ C where j > i, and that CHt and CHb are the top and

bottom parts of the convex hull obtained by incrementally inserting pi up to pj . We first prove

that the furthest point from (pi, pj) in 〈pi, . . . , pj〉 can be found in CHt or CHb.

Lemma 4.1. If pk is the furthest point from (pi, pj) in the subsequence 〈pi, . . . , pj〉, then

pk ∈ CHt ∪ CHb.

Proof. Assume pk 6∈ CHt ∪ CHb. Because CHt and CHb are convex and together form a single

convex shape, we know that pk must lie strictly below all line segments of CHt and strictly above

all line segments of CHb.



24 Chapter 4. Finding Shortcuts for Multiple Scales

pk

qx qx+1

pi pj

Figure 4.9: Furthest point pk 6∈ CHt.

Consider the case where the line segment from the

closest point from pk on (pi, pj) to pk goes upwards.

We know that by extending this line, it intersects CHt

in some line segment (qx, qx+1), as sketched in Fig-

ure 4.9. Note that either qx or qx+1 must be further

away from (pi, pj) than pk, regardless of the geomet-

ric configuration. Thus, pk is not actually the furthest

point from (pi, pj) in 〈pi, . . . , pj〉. By contradiction, we

obtain that in this case, pk ∈ CHt ∪ CHb.

An analogous argument can be given for the case

where the perpendicular line from (pi, pj) to pk goes downwards through CHb. We conclude by

contradiction that pk ∈ CHt ∪ CHb always holds. �

Let us prove that among all points on CHt and CHb, the set of candidates for the furthest point

from (pi, pj) found by ShortcutsConvexHull contains the actual furthest point in the hull

from (pi, pj). We do this by proving that the algorithm identifies the furthest point in each region

of (pi, pj) (see Figure 4.4b). Let us start with region T .

Lemma 4.2. Xij
t is the furthest point from (pi, pj) in CHt in region T of (pi, pj).

Proof. Let us define Xij
t = qx. Assume qx is not the furthest point in CHt from (pi, pj) in region

T of (pi, pj).

Therefore, there is a point qy on the hull that lies beyond the line through qx with normal ~ni,j .

Due to the convexity of the hull, the line must pass through the hull. Since the normals of the

line segments on the hull rotate monotonically, the angle of ~ni,j does not lie in between the angles

of ~nx−1,x and ~nx,x+1. This implies qx is not an extreme point, as is illustrated in Figure 4.10a.

By contradiction, we conclude that qx = Xij
t must be the furthest point in CHt from (pi, pj)

in region T of (pi, pj). �

An analogous proof can be given to show that Xij
b is the furthest point from (pi, pj) in CHb in

region B. We continue with region L.

Lemma 4.3. Xij
tl is the furthest point from pi in CHt in region L of (pi, pj).

Proof. Assume the furthest point from pi in CHt in region L of (pi, pj) is not Xij
tl , but rather

some other point qa ∈ CHt.

We know that qa is not visited, because otherwise we would have qa = Xij
tl by checking its

annotation, yielding a contradiction. Therefore, at some ancestor qx of qa, we did not continue on

a path down to qa. We further know that the annotation of qx is not considered, because otherwise

qa = Xij
tl , yielding the same contradiction.

pi pj

~ni,j

qy

qx = Xij
t

~nx,x+1

~nx−1,x

(a) Xij
t not an extreme point.

pi pj

qr

ql

qx

L

(b) Furthest point qx not in L.

Figure 4.10: Proving completeness of the furthest point candidates found by Algorithm 4.2.
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Thus, both the left-most point ql and right-most point qr of the subtree Tx rooted at px must

lie outside of L, and pi does not lie in between ql and qr. This situation is sketched in Figure

4.10b. Because CHt is convex, all points in Tx must lie outside of L. This implies qa lies outside

of L, since qa is a descendant of qx, and must therefore be in Tx.

By contradiction, we conclude Xij
tl must be the furthest point in CHt from pi in region L of

(pi, pj). �

Analogous proofs can be given to prove analogous claims for Xij
bl , X

ij
tr and Xij

br.

Theorem 4.4. Given a polygonal curve C = 〈p1, . . . , pn〉, we can compute H(〈pi, . . . , pj〉, 〈pi, pj〉)
for all 1 ≤ i < j ≤ n in O(n2 log n).

Proof. From Lemma 4.2 and Lemma 4.3, we deduce that the furthest point from (pi, pj) in CHt∪
CHb must be found by ShortcutsConvexHull. Using Lemma 4.1, it follows that this furthest

point from (pi, pj) in CHt ∪ CHb is the furthest point from (pi, pj) in 〈pi, . . . , pj〉. We therefore

obtain Emax[i][j] = maxpk∈〈pi,...,pj〉 dist(pk, (pi, pj)). Correctness follows by Lemma 2.1. �

4.3 Experimental Evaluation

In Section 4.1 we discussed how shortcut interval sets can be exploited to speed up construction

of the shortcut graph using ChinChan. In this section, we aim to investigate how this technique

performs in practice, with regards to the length of the input curve and the error bound. Further-

more, we explore how well ShortcutsConvexHull performs at constructing shortcut graphs

for multiple scales.

For the experimental setup, refer to Section 3.3.

4.3.1 Construction of Shortcut Interval Sets

In this section, we evaluate how the representation of the shortcut graph influences its construction

using ChinChan. We start with determining how the length of the input curves influences the

running time. We fix the shortcut graph density to 25% by choosing the error bound for every

input such that the resulting shortcut graph includes the shortcuts with the 25% smallest errors.

The results are listed in Table 4.1.

Length of the input curve

500 1000 1500 2500 3500 4250 5000

Explicit Shortcut Graph (sec.) 0.329 1.267 3.052 8.278 16.125 23.511 32.705

Shortcut Interval Set (sec.) 0.152 0.541 1.247 3.270 5.954 8.703 13.030

Shortcuts (×104) 3.169 12.587 28.256 78.344 154.43 226.15 312.94

Shortcut Intervals (×104) 0.084 0.190 0.242 0.373 0.659 0.868 0.816

Table 4.1: Running time in seconds of ChinChan and the associated number of shortcuts and
shortcut intervals for constructing a shortcut graph with 25% density for various lengths of the input
curve.

Plotting the running time results against the length of the input curve gives us Figure 4.11. We

observe that construction of shortcut interval sets consistently exhibits about 40% of the growth

in running time given by the construction of explicit shortcut graphs. Recall that ChinChan
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constructs explicit shortcut graphs by intersecting two sets of shortcuts. To facilitate this inter-

section, each of these sets must maintain an index of the shortcuts it contains. No such index

needs to be maintained by shortcut interval sets. Thus, insertion of new shortcuts into shortcut

interval sets is faster than inserting them into sets that explicitly store shortcuts. The running

time improvements are therefore not solely caused by the fast intersection of intervals discussed

in Section 4.1

Figure 4.11: Running time in seconds of ChinChan with explicit shortcut graphs versus shortcut
interval sets for various lengths of the input curve, and 25% density of the shortcut graph.

Next, we investigate how the density of the shortcut graph influences the construction time.

For this, we vary the error bound while fixing the length of the input curve to 3000. The results

obtained are given in Table 4.2. Note that the last error bound ε = 0.085 yields a complete

shortcut graph.

Error bound

0.001 0.005 0.01 0.03 0.05 0.07 0.085

Explicit Shortcut Graph (sec.) 2.375 11.299 16.881 27.305 37.768 44.705 47.326

Shortcut Interval Set (sec.) 0.945 4.083 5.887 8.929 13.876 15.154 14.101

Shortcuts (×104) 20.698 99.908 161.82 264.17 346.68 430.044 449.85

Shortcut Intervals (×104) 0.499 0.458 0.545 0.458 0.503 0.369 0.300

Table 4.2: Running time in seconds of ChinChan for both shortcut graph representations and the
associated number of shortcuts and shortcut intervals for various error bounds and 3000 points.

A plot of these results is given in Figure 4.12. As in Figure 4.11, the construction of shortcut

interval sets shows a growth in running time with respect to the error bound that is on average

40% that of the growth exhibited by explicit shortcut graphs.

This relationship on the time complexity is further illustrated by Figure 4.13a, where the time

spent per shortcut is plotted against the error bound. We observe that the time spent per shortcut

for both representations remains stable as the error bound grows.

Figure 4.13a shows a similar plot of the time spent per shortcut interval. We can see how the

time spent per shortcut interval non-monotonically increases as the error bound grows. This is

due to the non-monotonic growth of the number of shortcut intervals. As can be seen in Table 4.2,

the number of shortcut intervals sporadically increases and decreases as the density of the shortcut

graph grows.



4.3. Experimental Evaluation 27

Figure 4.12: Running time in seconds of ChinChan with explicit shortcut graphs versus shortcut
interval sets for various error bounds on 3000 points.

(a) Running time per shortcut (b) Running time per shortcut interval

Figure 4.13: Time spent per shortcut and per shortcut interval in microseconds by ChinChan with
explicit shortcut graphs versus shortcut interval sets for various error bounds and 3000 points.

We conclude that ChinChan is most efficient using shortcut interval sets, yielding significant

running time improvements for large input curves. Recall that in Section 3.3, we concluded

that shortcut interval sets in practice also yield significant benefits in terms of memory usage,

and running time for finding shortest paths. Shortcut interval sets thus yield benefits in each

computational aspect of the min-# simplification framework [16].

4.3.2 Construction for Multiple Scales

We described in Section 4.1 how ChinChan has a worst case running time of O(n2m). Fur-

thermore, in Section 4.2.2 we showed that integrated construction of m shortcut graphs using

ShortcutsConvexHull takes O(n2 log n+ n2m) time. In this section we investigate how these

terms relate to running-time performance in practice, and at what number of scales the initial

time investment of O(n2 log n) spent by ShortcutsConvexHull to compute all shortcut errors

amortizes to be more efficient than ChinChan.

Like the binary search tree used for finding shortest paths in shortcut interval sets (see

Section 3.2), we use left-leaning red-black trees [22] to represent the convex hulls CHt and CHb of

ShortcutsConvexHull. Furthermore, we use the most efficient implementation of ChinChan

using shortcut interval sets.

We sample the error bounds from the distribution of shortcut errors of C. We first obtain all

shortcut errors using any algorithm to solve Shortcuts All Scales. Next, we sort the errors and



28 Chapter 4. Finding Shortcuts for Multiple Scales

linearly sample m error bounds. This yields a shortcut graph G(C, εm) with a density of 100%.

By linearly sampling, the density of the shortcut graphs grows linearly as the scale increases.

Recall that ChinChan performs well for small error bounds, and poorly for large error bounds.

By sampling up to an error bound that yields a complete shortcut graph, we thus exhaustively

capture the strengths and weaknesses of ChinChan.

Number of scales

1 5 10 20 30 40 60 80 100

Convex hulls 285.41 300.27 317.93 335.46 368.20 397.67 455.58 528.11 594.19

Chin-Chan 10.45 45.59 77.59 146.84 216.09 288.04 426.75 579.63 724.74

Table 4.3: Running time in seconds for constructing multiple shortcut interval sets using independent
construction by ChinChan versus integrated construction by ShortcutsConvexHull on 3500
points, with error bounds linearly sampled from the smallest to the largest shortcut error.

The running-time measurement are listed in Table 4.3. The corresponding plot is given in

Figure 4.14. We observe that the running time of both algorithms is linear in the number of

scales. For the construction of a single shortcut graph, ShortcutsConvexHull is 27 times

slower than ChinChan. However, ChinChan spends on average 7.2 seconds for every additional

error bound, whereas ShortcutsConvexHull spends on average only 3.1 seconds. Therefore, for

every additional scale, ShortcutsConvexHull is over twice as efficient as ChinChan. Beyond

65 error bounds, ShortcutsConvexHull is the preferred construction algorithm in terms of

running time.

We conclude that ShortcutsConvexHull is only preferable to ChinChan when construct-

ing a large number of shortcut graphs. Its applications are therefore limited to simplification for

many levels of detail, such as interactive visualizations with many zoom levels.

Figure 4.14: Running time in seconds of constructing multiple shortcut interval sets using ChinChan
versus ShortcutsConvexHull on 3500 points for various numbers of scales.
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Progressive Simplification of
Polygonal Curves

In this chapter we discuss two approaches for solving Progressive Min-#. We propose a pro-

gressive simplification algorithm that minimizes the number of points across all scales (Section 5.1).

Next, we present two greedy algorithms with better running times that do not provide these guar-

antees on the simplification size, and show how existing non-progressive algorithms can be extended

to greedily compute progressive simplifications (Section 5.2). Finally, we experimentally evalu-

ate how both of these approaches compare, and how they compare to a minimal non-progressive

simplification algorithm (Section 5.3).

5.1 An Optimal Algorithm

Recall that a progressive simplification is defined by a set of simplifications for various error bounds

on which a monotonic containment relation exists. This means that for any two simplifications

S` and Sk where 1 ≤ ` ≤ k, S` must include all points of Sk. Including a shortcut (pi, pj) in

any simplification Sk thus has an impact on the structure of all simplifications at a lower scale.

Therefore, a global minimum has to be computed on the cumulative size of the simplifications.

We compute this global minimum by associating a cost with including any shortcut in any

simplification. Specifically, we have an integer cost ckij ∈ N associated with including any shortcut

(pi, pj) from the shortcut graph G(C, εk) in the simplification Sk. This integer cost represents the

minimal combined number of shortcuts (px, py) ∈ 〈pi, . . . , pj〉 that will have to be added to any

S` where 1 ≤ ` ≤ k, if we include (pi, pj) in Sk. This gives us the following cost function:

ckij =


1 if (pi, pj) ∈ G(C, εk) ∧ k = 1

1 + min
π∈∏k−1

ij

∑
(px,py)∈π

ck−1xy if (pi, pj) ∈ G(C, εk) ∧ k > 1

∞ otherwise

We use
∏k
ij to denote the set of all paths in G(C, εk) from pi to pj .

Using the costs for scale m, we can find Sm such that the sum of all costs associated with

its shortcuts is minimized. Then for any shortcut (pi, pj) ∈ Sm, we can build a simplification for

〈pi, . . . , pj〉 in Sm−1 using the costs for scale m− 1. By chaining all these simplifications together,

we obtain Sm−1. We continue doing this until we have found S1.

Determining the cost values as described earlier is possible by adding the costs as weights to

29
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Figure 5.1: Shortcut graphs weighted by cost, and a minimal progressive simplification.

the shortcut graph at every scale. Specifically, any edge (pi, pj) in shortcut graph G(C, εk) has

weight ckij . The weight of a shortcut ckij can then be retrieved by finding a path π in G(C, εk−1)

from pi to pj such that
∑

(px,py)∈π c
k−1
xy is minimized. Similar minimum-weight paths are used to

construct the simplifications. In Figure 5.1, a complete example is illustrated which shows how

the weights are determined, and how the simplifications are constructed.

From this figure, we observe that for any shortcut (pi, pj) at scale k, if (pi, pj) ∈ G(C, εk−1),

we have ckij = ck−1ij + 1. Therefore, if a shortcut at scale k is present at scale k − 1, we can reuse

its weight by incrementing it by one. We can prove this as follows:

Lemma 5.1. For any 1 < k ≤ m and n ≥ j > i ≥ 1, if (pi, pj) ∈ G(C, εk−1), then ckij = ck−1ij + 1.

Proof. Assume (pi, pj) ∈ G(C, εk−1). Note that G(C, εk) ⊆ G(C, ε`) for all 1 ≤ k < ` ≤ m, because

ε` ≥ εk. Thus, for all 1 ≤ k < ` ≤ m, any shortcut in G(C, εk) must also be present in G(C, ε`).
Because (pi, pj) ∈ G(C, εk−1), this implies that (pi, pj) ∈ G(C, εk).

Case k = 2: We prove c2ij = c1ij + 1 as follows:

c2ij = 1 + min
π∈∏1

ij

∑
(px,py)∈π

c1xy

= 1 + min
π∈∏1

ij

∑
(px,py)∈π

1

= 1 + min
π∈∏1

ij

|π|

= 1 + 1 (pi, pj) ∈
∏1
ij

= c1ij + 1

Case k > 2: We prove ckij = ck−1ij + 1 by showing that both the upper and lower bound of ckij is

equal to ck−1ij + 1. Let us start with the upper bound.
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ckij = min
π∈∏k−1

ij

∑
(px,py)∈π

ck−1xy + 1

≤
∑

(px,py)∈〈pi,pj〉
ck−1xy + 1 (pi, pj) ∈ G(C, εk−1)

= ck−1ij + 1

Now let us prove the lower bound.

ckij = 1 + min
π∈∏k−1

ij

∑
(px,py)∈π

ck−1xy

= 1 + min
π∈∏k−1

ij

∑
(px,py)∈π

(1 + min
π′∈∏k−2

xy

∑
(pa,pb)∈π′

ck−2ab )

≥ 1 + 1 + min
π∈∏k−1

ij

∑
(px,py)∈π

min
π′∈∏k−2

xy

∑
(pa,pb)∈π′

ck−2ab |π| ≥ 1

≥ 1 + 1 + min
π∈∏k−2

ij

∑
(px,py)∈π

ck−2xy

= ck−1ij + 1

The last inequality holds, since a path from pi to pj constructed by concatenating several shortest

paths is always at least as long as a single shortest path from pi to pj .

We may now conclude that for all 1 < k ≤ m and n ≥ j > i ≥ 1, we have ckij = ck−1ij + 1 if

(pi, pj) ∈ G(C, εk−1). �

We can use this result to efficiently assign a weight to any shortcut that was encountered at an

earlier scale, without recomputing a shortest path. The pseudo-code of the resulting algorithm is

given in Algorithm 5.1.

Weighted Simplifications Recall that for Weighted Progressive Min-#, we are given

positive weights W = 〈w1, . . . , wm〉 in R and need to minimize
∑m
k=1 wk|Sk|. We can trivially

extend the cost function ckij to facilitate solving this problem. Specifically, we assign a cost of wk
(instead of 1) to every line segment in any simplification Sk, as follows:

ckij =


wk if (pi, pj) ∈ G(C, εk) ∧ k = 1

wk + min
π∈∏k−1

ij

∑
(px,py)∈π

ck−1xy if (pi, pj) ∈ G(C, εk) ∧ k > 1

∞ otherwise

5.1.1 Optimization

In this section we explore (potential) techniques for optimizing the running time of ImaiIriPro-

gressive.

Determining shortcut cost A naive technique for finding a shortest path on line 9 is to run

any single-source shortest path algorithm for every shortcut (pi, pj). Because a shortcut graph

contains at most
(
n
2

)
shortcuts, any such algorithm would run in at least O(n2) time. However,

this approach potentially discards shortest path information that can be reused.
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Algorithm 5.1 ImaiIriProgressive(C, E)
1: G(C, ε1), . . . , G(C, εm)← Shortcuts Multi-Scale(C, E)
2: for k ← 1 to m do
3: for each (pi, pj) in G(C, εk) do
4: if k = 1 then
5: ckij ← 1
6: else if (pi, pj) ∈ G(C, εk−1) then
7: ckij ← 1 + ck−1ij

8: else
9: ckij ← 1 + weight of the shortest path from pi to pj in G(C, εk−1)

10: end if
11: end for
12: end for
13: for k ← m to 1 do
14: if k = m then
15: Sk ← shortest path from p1 to pn in G(C, εk)
16: else
17: for each (pi, pj) in Sk+1 do
18: Sk ← Sk ∪ shortest path from pi to pj in G(C, εk)
19: end for
20: end if
21: end for
22: return 〈S1, . . . ,Sm〉

Dijkstra’s algorithm [9] takes any source node u in a graph G = (V,E) and builds a data

structure in O(|V | log |V |+ |E|) time which holds the shortest path distance from u to any target

node v. This data structure can be used to construct any of these shortest paths in O(|V |) time.

If we run Dijkstra’s algorithm every time we reach line 9, we obtain an amortized running time of

O(n4). This is the case since we need to find a weight for a worst case total of O(n2) shortcuts.

Now consider we instead build this data structure for every scale k only once for every pi for

which there exists some shortcut (pi, pj) ∈ G(C, εk) where (pi, pj) 6∈ G(C, εk−1). This yields O(n)

data structures from which the shortest path for any shortcut at scale k can be obtained in O(n)

time. Constructing each data structure takes O(n2) time, and thus we have a total worse-case

running time of O(n3m).

Figure 5.2: Heat map of the shortcut
costs in G(C, εm). From low to high

cost: black, red, yellow, white.

Integration of shortcut intervals Note that the al-

gorithm to find shortest paths in shortcut interval sets

presented in Section 3.2 is not limited to unweighted

shortcuts, and can trivially be extended to find paths

with lowest weight. We assign a weight w to every short-

cut interval [x, y] ∈ Ii(ε) for some point pi, such that

every shortcut (pi, pj) has weight w where x ≤ j ≤ y.

By weighting the intervals, we potentially fragment

an unweighted interval into many weighted intervals.

Therefore, to effectively employ weighted shortcut inter-

val sets, we need most consecutive shortcuts (pi, pj) and

(pi, pj+1) to share the same weight.

In Figure 5.2 we see a heat map of the costs of short-

cuts in G(C, εm) given by ImaiIriProgressive in prac-

tice. The rows and columns correspond to the points in

C. Each cell i, j is colored according to the cost cmij of
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shortcut (pi, pj). Although we observe many regions with a similar color, analysis shows that al-

most all consecutive shortcuts have a slightly different cost. Therefore, by using weighted shortcut

interval sets in ImaiIriProgressive using the costs of the shortcuts, we have O(n2) weighted

intervals in practice. This means no running time advantages can be obtained by using shortcut

interval sets for this algorithm.

5.1.2 Correctness

As in the correctness proof of Single Scale min-# given in Section 2.3, we prove the correctness

of ImaiIriProgressive by arguing that its output is both valid and minimal. Specifically, the

combined number of points should be minimized while having a sequence of simplifications among

which there exists a monotonic containment relation. Furthermore, each simplification Sk should

not violate the maximum error εk.

Consider 〈S1, . . . ,Sm〉 is the progressive simplification produced by ImaiIriProgressive for

some polygonal curve C and set of error bounds E . Enforcement of the monotonic containment

relation follows directly from the structure of the algorithm. Lines 17-19 impose that for any

1 ≤ k < m and shortcut (pi, pj) ∈ Sk+1, there exists a subsequence 〈pi, . . . , pj〉 v Sk. We

therefore must have Sk+1 v Sk.

Furthermore, by applying Lemma 2.3, we deduce that each simplification Sk does not violate

the error bound εk.

It remains to be shown that the cumulative size of all simplifications is minimal. To this end,

we define the following for any n ≥ j > i ≥ 1 and 1 ≤ k ≤ m:

Sijk = { (px, py) ∈ Sk | x ≤ i < j ≤ y }

Intuitively, this definition includes all line segments of Sk that span the subcurve 〈pi, . . . , pj〉. Let

us now prove that the cost of a shortcut (pi, pj) in G(C, εk) is the same as the combined number

of links for subsequence 〈pi, . . . , pj〉 in all simplifications from scale 1 to k.

Lemma 5.2. For any 1 ≤ k ≤ m and n ≥ j > i ≥ 1, if (pi, pj) ∈ Sk, then ckij =
∑k
`=1 |S

ij
` |.

Proof. We show ckij =
∑k
`=1 |S

ij
` | by induction on k using the following induction hypothesis:

For any n ≥ y > x ≥ 1, if (px, py) ∈ Sk, then ckxy =

k∑
`=1

|Sxy` | (IH)

Base k = 1: Take any shortcut (pi, pj) ∈ S1. This implies (pi, pj) ∈ G(C, ε1). Furthermore, we

know Sij1 = {(pi, pj)}, so |Sij1 | = 1. We derive the following:

c1ij = 1 =

k∑
`=1

1 =

k∑
`=1

|Sij1 |

Step k > 1: Take any line segment (pi, pj) ∈ Sk+1. This implies (pi, pj) ∈ G(C, εk+1), and

Sijk+1 = {(pi, pj)}, so |Sijk+1| = 1.

Consider any 1 ≤ ` ≤ k and a path π ∈ ∏k
ij such that

∑
(px,py)∈π |S

xy
` | is minimal. We derive

that π = Sij` , such that Sxy` is minimal for all (px, py) ∈ π. Note that π = Sij` ⊆ G(C, ε`) ⊆
G(C, εk), since εk ≥ ε`. From this we may conclude that π is both in

∏`
ij and

∏k
ij . From this it

follows that:

min
π∈∏k

ij

∑
(px,py)∈π

|Sxy` | = min
π∈∏`

ij

∑
(px,py)∈π

|Sxy` | (5.1)
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Furthermore, from π = Sij` we can derive that Sxy` ∩ S
yz
` = ∅ for any (px, py) and (py, pz) in π.

Thus, combining Sxy` for all (px, py) ∈ π yields a non-overlapping sequence of shortcuts from pi to

pj . This gives us:

min
π∈∏`

ij

∑
(px,py)∈π

|Sxy` | = |S
ij
` | (5.2)

We may now derive the following:

ck+1
ij = 1 + min

π∈∏k
ij

∑
(px,py)∈π

ckxy

= 1 + min
π∈∏k

ij

∑
(px,py)∈π

k∑
`=1

|Sxy` | IH

= 1 +

k∑
`=1

min
π∈∏`

ij

∑
(px,py)∈π

|Sxy` | Equation 5.1

= 1 +

k∑
`=1

|Sij` | Equation 5.2

=

k+1∑
`=1

|Sij` | |Sijk+1| = 1

Note that we can apply the induction hypothesis, because (px, py) ∈ Sk as stated on line 18 of

ImaiIriProgressive. We conclude ckij =
∑k
`=1 |S

ij
` | if (pi, pj) ∈ Sk for all 1 ≤ k ≤ m. �

Theorem 5.3. Given a polygonal curve C and set of error bounds E, a minimal progressive

simplification can be computed in O(n3m) time under distance measures for which the validity of

a shortcut can be determined in O(n) time, such as Fréchet, Hausdorff and area-based measures.

Proof. It remains to be proven that the cumulative size of the simplifications computed by ImaiIri-

Progressive is minimal. Let 〈S ′1, . . . ,S ′m〉 be a minimal progressive simplification, and let

〈S1, . . . ,Sm〉 be the simplification computed by ImaiIriProgressive. We derive the following:

min
π∈∏m

1n

∑
(px,py)∈π

cmxy = min
π∈∏m

1n

∑
(px,py)∈π

m∑
`=1

|Sxy` | Lemma 5.2

=

m∑
`=1

min
π∈∏`

1n

∑
(px,py)∈π

|Sxy` | Equation 5.1

=

m∑
`=1

|S1n` | Equation 5.2

=

m∑
`=1

|S`|

Note that we can apply Lemma 5.2, since (px, py) ∈ Sm, as stated on line 15 of ImaiIriProgress-

ive. We observe that the cumulative size of the solution produced by the algorithm constitutes a

minimization of the cost function. Therefore, the output of ImaiIriProgressive is a combina-

tion of paths in the shortcut graphs G(C, ε1), . . . , G(C, εm) among which there exists a monotonic

containment relation, such that the combined length is minimal.
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Furthermore, by following the same reasoning as in the proof of Lemma 2.4, we know that

every S ′` ∈ 〈S ′1, . . . ,S ′m〉 has to be a path in G(C, ε`).
From these two claims we conclude

∑m
`=1 |S`| ≤

∑m
`=1 |S ′`|. �

Note that these proofs also apply if we extend the cost function to solve the weighted progressive

simplification problem Weighted Progressive Min-#, as described in Section 5.1. Therefore,

by Theorem 5.3 and Lemma 2.2, we can deduce the following:

Corollary 5.4. Given a polygonal curve C, a continuous progressive simplification can be computed

in O(n5) time under distance measures for which the validity of a shortcut can be determined in

O(n) time, such as Fréchet, Hausdorff and area-based measures.

5.2 Greedy Construction Techniques

Because the global minimization of the cumulative simplification size of Progressive Min-# is

complex, we investigate two techniques for solving this problem where no requirements are placed

on the size of the simplifications. Instead of searching for a global minimum of the combined

simplification size, we greedily build the simplifications scale by scale, finding local minima while

maintaining the monotonic containment. The simplest way is by building the simplifications from

the bottom up, or from the top down. In this section we explore these techniques and discuss how

they can be integrated with existing single-scale simplification algorithms.

5.2.1 Top-down Construction

By constructing simplifications from the top down, we employ the divide-and-conquer design

paradigm. At every scale k, we divide C into subcurves by simplification with error bound εk.

Next, on scale k−1, we simplify each of these subcurves using εk−1, thereby generating more fine-

grained subcurves of C. Note that we have already seen this technique in ImaiIriProgressive.

The difference is that we greedily choose a simplification Sm by finding a shortest path in the

unweighted shortcut graph G(C, εm). The simplification Sm−1 is then found by concatenating all

greedily chosen shortest paths from pi to pj for every (pi, pj) ∈ Sm. We continue this process until

we have found S1. This gives us Algorithm 5.2.

Algorithm 5.2 ImaiIriTopDown(C, E)
1: G(C, ε1), . . . , G(C, εm)← Shortcuts Multi-Scale(C, E)
2: for k ← m to 1 do
3: if k = m then
4: Sk ← shortest path from p1 to pn in G(C, εk)
5: else
6: for each (pi, pj) in Sk+1 do
7: Sk ← Sk ∪ shortest path from pi to pj in G(C, εk)
8: end for
9: end if

10: end for
11: return 〈S1, . . . ,Sm〉

Running time The running time is bound by the time spent solving Shortcuts Multi-

Scale(C, E), giving us O(n2m) time (see Section 4.1) or (n2 log n+ n2m) time (see Section 4.2).
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Optimization Due to the greedy selection of any simplification and the monotonic containment

relation among the simplifications, potentially many shortcuts are never considered. For any scale

1 ≤ k < m and shortcut (px, py) ∈ Sk+1, we find a simplification of 〈px, . . . , py〉 in G(C, εk). This

means that any shortcut (pi, pj) ∈ G(C, εk) can never be included in Sk if j > x > i or j > y > i.

We can therefore optimize the algorithm by not considering these shortcuts when constructing

the shortcut graphs. Instead of solving Shortcuts Multi-Scale, we solve Shortcuts Single

Scale at every scale k using an algorithm that prunes the search space whenever possible.

We extend the shortcut graph construction algorithm by Chin and Chan [6] (Section 4.1).

Recall that we construct G(C, εk) by intersecting two sets of shortcuts obtained by traversing C
in both directions. When traversing C from start to end, we skip from pi to pi+1 whenever we

reach a shortcut (pi, pj) such that i < y < j for a line segment (px, py) ∈ Sk+1. Conversely, when

traversing from the end to the start of C, we skip from pj to pj−1 whenever we consider a shortcut

(pi, pj) such that i < x < j for a line segment (px, py) ∈ Sk+1. These two types of pruning are

illustrated in Figure 5.3.

pi pj

pypx

(px, py) ∈ Sk+1

Figure 5.3: Pruning the search space for shortcut graph G(C, εk).

5.2.2 Bottom-up Construction

By taking greedy choices from the bottom up, we start at the lowest scale with the smallest

error bound, thereby starting with the least aggressive greedy choice. Construction at any scale

k works by finding a shortest paths from p1 to pn in G(C, εk), and removing all nodes and edges

in G(C, εk+1) associated with any point pi 6∈ Sk, thereby directly imposing Sk+1 v Sk. This is

illustrated in Figure 5.4. The algorithm’s pseudo code is presented in Algorithm 5.3.

Algorithm 5.3 ImaiIriBottomUp(C, E)
1: G(C, ε1), . . . , G(C, εm)← Shortcuts Multi-Scale(C, E)
2: for k ← 1 to m do
3: Sk ← shortest path from p1 to pn in G(C, εk)
4: for each pk in C do
5: if pi 6∈ Sk then
6: Remove pi from G(C, εk+1)
7: end if
8: end for
9: end for

10: return 〈S1, . . . ,Sm〉

Running time As for ImaiIriTopDown, the running time is bound by the time spent con-

structing the shortcut graphs, yielding O(n2m) (Section 4.1) or (n2 log n+ n2m) (Section 4.2).
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G(C, ε2)

G(C, ε1)

G(C, ε3)

Figure 5.4: Bottom-up greedy construction of progressive simplifications using Imai-Iri [16].

Optimization As for the top-down approach, we can improve the performance of this algorithm

by integrating the construction of the shortcut graphs with the greedy choices that are made at

every scale. Instead of pruning the shortcut graph on line 6, we can limit the search space while

constructing the shortcut graph using ChinChan (see Section 4.1).

Consider we are constructing G(C, εk) for some 1 ≤ k ≤ m. During the forward traversal of

C, we skip from pi to pi+1 whenever pi 6∈ Sk−1. Furthermore, for every shortcut (pi, pj) where

pj 6∈ Sk−1, we do not check whether pj is inside the wedge w, since (pi, pj) cannot be included in

Sk. Note that we do intersect wedge w with wedge wj , since there may be valid shortcuts (pi, pk)

where k > j. Similar pruning is performed during the reverse traversal of C.

Naive construction Cao et al. [5] devised an efficient heuristic for simplifying polygonal curves

progressively. This heuristic works by constructing the shortcut graph at any scale k > 1 on

Sk−1, instead of on C. This way, we can obtain Sk by finding a shortest path from p1 to pn in

G(Sk−1, εk), as opposed to the pruned shortcut graph G(C, εk). Although this would improve the

running time since |Sk−1| ≤ |C|, guarantees on the maximum error are lost. This is illustrated

for the Hausdorff distance in Figure 5.5. Note how for higher scales, the simplifications become

progressively worse in terms of the Hausdorff distance to the input curve. The bound on the error

of simplification Sk is max(pi,pj)∈Sk H(〈pi, . . . , pj〉, 〈pi, pj〉) ≤
∑k
`=1 ε` for all 1 ≤ k ≤ m.

ε1

(a) S1

ε2

ε1 + ε2

(b) S2

ε3

ε1 + ε2 + ε3

(c) S3

Figure 5.5: Naive bottom-up construction of simplifications using shortcut graphs. The Hausdorff
distance to the input curve becomes progressively larger.

5.2.3 Integrating Single-Scale Simplification

The structure of ImaiIriTopDown (Algorithm 5.2) can trivially be exploited to facilitate other

simplification techniques. We do this by replacing the shortest path queries with any algorithm
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that solves Single Scale Min-# either optimally or greedily.

Such an algorithm was developed by Ramer [20], and Douglas and Peucker [10], which greedily

simplifies polygonal curves under the Hausdorff distance. For any polygonal curve C = 〈p1, . . . , pn〉,
this algorithm recursively splits the polygonal curve in two until the remaining subcurves can

safely be replaced with a single line segment. The splitting point ps is found for any subcurve

C′ = 〈pi, . . . , pj〉 v C by finding the furthest point in C′ from the line segment (pi, pj). Pseudo

code for this simplification heuristic is given in Algorithm 5.4.

Algorithm 5.4 DouglasPeucker(C, ε)
1: dmax ← 0
2: for i← 2 to n− 1 do
3: di ← dist(pi, (p1, pn))
4: if di > dmax then
5: dmax ← di
6: ps ← pi
7: end if
8: end for
9: if dmax > ε then

10: S1 ←DouglasPeucker(p1, . . . , ps, ε)
11: S2 ←DouglasPeucker(ps, . . . , pn, ε)
12: S ← S1 ∪ S2 Include ps only once
13: else
14: S ← 〈p1, pn〉
15: end if
16: return S

The simplification heuristic by Cao et al. [5] discussed in Section 5.2.2 works for any curve

simplification algorithm, and can therefore be applied to DouglasPeucker. We thus have

Sk = DouglasPeucker(Sk−1, εk) for any 1 < k ≤ m. Despite this naive construction heuristic,

we retain our bound on the Hausdorff distance across all scales, since the algorithm splits each

subcurve on the furthest point from the corresponding shortcut. This is unlike the naive bottom-

up construction using shortcut graphs as discussed in Section 5.2.2. Furthermore, as a result of

this splitting strategy, constructing from the bottom up always yields the same simplification as

constructing from the top down.

Running time If we expect that every split of every subcurve C′ v C is roughly in the middle,

the expected running time complexity of this algorithm can be described by the linear recurrence

T (n) = 2T (n2 ) +O(n). Solving this recurrence using the Master theorem yields T (n) ∈ Θ(n log n)

meaning the expected running time of DouglasPeucker to greedily solve Single Scale Min-#

is Θ(n log n). In the worst case, every split yields a subcurve with size Θ(n), meaning that the

worst-case running time is Θ(n2).

We conclude that both the top-down and the bottom-up extension of DouglasPeucker to

greedily solve Progressive Min-# yields an expected running time of Θ(nm log n), and a worst

case running time of Θ(n2m).

5.2.4 Worst-case Performance

One disadvantage of using greedy algorithms for progressive curve simplifications is that a single

bad choice on a certain scale can lead to a poor simplification on another scale. To highlight this,

consider Figure 5.6. Here we see a recurring zigzag pattern of points between pi and pj with a

length of O(n). Note that the subcurve 〈pi, . . . , pj〉 can only be simplified by 〈pi, pj〉 for any error



5.3. Experimental Evaluation 39

bound ε ≥ εx. Therefore, any greedy choice that excludes 〈pi, pj〉 yields a simplification that is

O(n) larger than the minimum.

Consider the case where ε1 = εx and ε2 = εy. In this case, ImaiIriBottomUp includes

shortcut (pi, pj) ∈ S1. However, ImaiIriTopDown yields a simplification S2 = 〈p1, pi+1, pn〉
using εy at the second scale. This results in an independent simplification of 〈p1, . . . , pi+1〉 and

〈pi+1, . . . , pn〉 at the first scale using εx. Therefore, shortcut (pi, pj) cannot be included in S1,

meaning ImaiIriTopDown is forced to include 〈pi+1, . . . , pj〉 in S1.

Next, consider the case where ε1 = 0 and ε2 = εx. ImaiIriTopDown will efficiently simplify

〈pi, . . . , pj〉 at the second and first scale. However, ImaiIriBottomUp removes pi using ε1 = 0

since it lies on the line segment (p1, pi+1). This however removes the possibility of including

shortcut (pi, pj) at the second scale. ImaiIriBottomUp thus must include 〈pi+1, . . . , pj〉 in S2.

Note that in both cases, both a bottom-up and top-down construction of a progressive sim-

plification using DouglasPeucker will fail to include (pi, pj) in any simplification, due to its

splitting heuristic.

εx

εy

. . .

εy

pi

pj

pn
εx

p1

pi+1

Figure 5.6: Problematic case for the greedy construction algorithms.

5.3 Experimental Evaluation

We explore how the real-world performance of every proposed progressive simplification algorithm

relates to its theoretical asymptotic running time. We therefore experimentally investigate the

performance of each simplification algorithm along two dimensions: the length of the input curve,

and the number of scales.

For the experimental setup, refer to Section 3.3.

5.3.1 Performance by Curve Length

To gain general insights into the performance of every simplification algorithm – both in terms of

running time and simplification complexity – we experimentally evaluate how the performance of

each algorithm relates to the length of the input curve. For these experiments, we fix the number

of scales to 10. Furthermore, we linearly sample the error bounds from the smallest shortcut error

up to the tenth shortcut error percentile, yielding a density of 10% for shortcut graph G(C, εm).

For every algorithm, we measure both its running time, and the cumulative simplification size∑m
i=1 |Si|.
To gauge how the running time is influenced by imposing monotonic containment on the sim-

plifications, we use a non-progressive simplification algorithm (II Non Prog.), which independently

constructs min-# simplifications using shortcut graphs (See Section 2.3).

All shortcut graphs are represented using shortcut interval sets constructed by ChinChan

(Algorithm 4.1), on which we compute shortest paths using range queries (Section 3.2). As dis-
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cussed in Section 5.1.1, we cannot use shortcut interval sets for ImaiIriProgressive. However,

we do wish to efficiently detect all shortcuts by using shortcut intervals in conjunction with Chin-

Chan. Therefore, this algorithm is implemented such that ChinChan provides the algorithm

with shortcut interval sets, from which every shortcut is copied to an explicit shortcut graph. On

each such shortcut graph, we then compute shortest paths with an implementation of Dijkstra’s

algorithm [9] using a priority queue implemented by a pairing heap [11]. This is a popular and

flexible heap type commonly used for Dijkstra’s algorithm. Testing shows that for finding shortest

paths in shortcut graphs, pairing heaps show similar or better performance compared to other

popular heap types such as d-ary heaps, Fibonacci heaps, or binomial heaps.

The running time and cumulative simplification size of each algorithm for various lengths of

the input curve is given in Table 5.1. Plotting these running times yields Figure 5.7. ImaiIriPro-

gressive (II Prog.) exhibits running times that are at least an order of magnitude worse than

every other algorithm. The performance of ImaiIriTopDown (II TD) is worse than ImaiIri-

BottomUp (II BU) since it performs less pruning in the search space of each shortcut graph.

Length of the input curve

500 1500 2500 3500 5000

sec. # sec. # sec. # sec. # sec. #

II Prog. 0.651 719 7.258 636 24.269 640 52.740 596 146.64 647

II Non Prog. 0.290 646 2.357 570 6.187 568 10.921 520 21.454 576

II TD 0.242 1066 1.915 1277 4.542 1455 8.177 1432 16.328 1600

II BU 0.076 814 0.278 723 0.618 733 0.989 680 1.645 717

II BU Cao 0.026 751 0.097 675 0.215 690 0.402 624 0.784 655

DP TD 0.0039 849 0.0111 862 0.017 879 0.025 885 0.039 1010

DP BU 0.0046 849 0.0091 862 0.012 879 0.016 885 0.023 1010

Table 5.1: Running time in seconds and cumulative simplification size for various lengths of the input
curve and 10 scales.

Figure 5.7: Running time for various lengths of the input curve and 10 scales.
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To evaluate the running time of the other algorithms, consider Figure 5.8. We observe that

naive bottom-up construction as presented in Section 5.2.2 (II BU Cao) is consistently twice as

fast as II BU. Furthermore, both the top-down construction (DP TD) and bottom-up construction

(DP BU) using DouglasPeucker run in linear time in the length of the input curve, and are

an order of magnitude faster than the other greedy algorithms. DP BU exhibits running times

that are around 40% faster than DP TD. For few points, DP TD is faster than DP BU due to the

benefits of the divide-and-conquer approach of DP TD, which for small input curves outweighs

the time saved by DP BU’s pruning of the shortcut graphs.

(a) II BU and II BU Cao (b) DP TD and DP BU

Figure 5.8: Running time of the greedy algorithms for various lengths of the input curve and 10 scales.

(a) Proportions by length of the input curve (b) 5000 points

Figure 5.9: Cumulative simplification size for 10 scales.

Aside from the running time, we are interested in the cumulative size of the progressive simpli-

fications produced by the algorithms. In Figure 5.9a, we see how these cumulative simplification

sizes relate proportionally. We observe that for large curves, II TD produces simplifications that

are proportionally larger when compared to smaller input curves. This is explained by the greedy

choice strategy of II TD, which starts with a greedy choice on Sm. Any error made in this sim-

plification propagates to all lower scales. Therefore, II TD starts with the most aggressive greedy

choice. The extent of a poor greedy choice for Sm exacerbates for larger input curves.

The proportions however do stabilize for larger input curves. A visualization of the cumulative

simplification size of each algorithm for the largest input curve (5000 points) is given in Figure 5.9b.

Note that II Prog. yields the best progressive simplification, which is 12% larger than the best

possible non-progressive simplification obtained by II Non Prog. The second best progressive

simplification is produced by II BU, which is 11% larger than II Prog. This simplification size is

further lowered by II BU Cao, which does so by relaxing the error bound. This algorithm produces

a simplification that is 8.5% smaller than II BU, and 1.2% larger than II Prog.
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Next, let us investigate how the cumulative simplification size is distributed over all scales for

each algorithm. For this, we use the same parameters, but simplify for 15 scales instead of 10.

The results are listed in Table 5.2, and plotted on a logarithmic scale in Figure 5.10.

Despite starting at the highest scale, II TD produces a simplification at scale 14 that is worse

compared to the other algorithms. Furthermore, note that despite its poor cumulative simplifica-

tion size, II TD does produce the best simplification for the highest scale.

Simplification size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

II Prog. 412 149 118 89 75 64 50 45 38 32 31 29 25 25 24

II Non Prog. 402 136 95 73 59 51 37 35 32 29 27 25 24 22 20

II TD 812 519 395 314 255 214 179 150 122 101 82 66 51 35 20

II BU 402 203 146 106 87 66 59 47 44 38 35 33 31 29 28

II BU Cao 402 168 123 99 76 67 53 45 41 36 33 29 29 29 25

DP TD/BU 553 287 184 126 97 73 62 51 47 44 40 40 36 33 32

Table 5.2: Simplification size at every scale for 5000 points and 15 scales.

Figure 5.10: Simplification size at every scale on a logarithmic scale, for 5000 points and 15 scales.

We conclude that in practice, ImaiIriProgressive yields simplifications that are comparable

in size to minimal non-progressive simplifications. However, it is too slow to be used on larger

input curve. This makes ImaiIriBottomUp a sensible alternative which is significantly faster and

yields simplifications that are only slightly larger. New techniques for finding shortest paths on

weighted shortcut graphs have to be developed to improve the scalability of ImaiIriProgressive.

Furthermore, top-down construction by ImaiIriTopDown was shown to be significantly worse

than ImaiIriBottomUp, both in terms of running time and simplification complexity.

Finally, bottom-up construction of progressive simplifications using the well known algorithm

by Douglas and Peucker [10] yields the best running-time performance in practice for all lengths

of the input curve, and is thus the most scalable progressive simplification algorithm. However,

it generates simplifications that are up to 56% larger than simplifications produced by ImaiIri-

Progressive, which is unsuitable in settings where the cumulative complexity of the progressive

simplification is critical.
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5.3.2 Performance by Number of Scales

We investigate how the running time and cumulative simplification size relates to the number of

scales. For these experiments, we fix the length of the input curve to 3000 points. The results are

given in Table 5.3. Note that for a single scale, every algorithm produces an optimal simplification,

except for the heuristic-based algorithms DP TD and DP BU.

A plot of the running times is given in Figure 5.11. Note the linear relation between the

running time and the number of scales. We observe a growth in running time of II Prog. that is

around four times that of II Non Prog.

Number of scales

1 8 20 44 68

sec. # sec. # sec. # sec. # sec. #

II Prog. 3.056 20 29.143 435 68.743 1573 133.40 4297 197.01 7331

II Non Prog. 1.992 20 6.588 384 14.772 1397 32.265 3719 47.796 6356

II TD 1.986 20 4.889 1020 8.557 4643 16.254 13191 23.574 22198

II BU 1.995 20 0.749 509 1.188 1822 2.459 4958 3.708 8356

II BU Cao 1.993 20 0.351 467 0.209 1696 0.202 4599 0.244 7825

DP TD 0.0070 29 0.018 649 0.033 2119 0.060 5443 0.088 9013

DP BU 0.0068 29 0.016 649 0.019 2119 0.33 5443 0.047 9013

Table 5.3: Running time in seconds and cumulative simplification size on 3000 points for various
numbers of scales.

Figure 5.11: Running time on 3000 points for various numbers of scales.

The running times of the other algorithms are visualized in Figure 5.12. Unlike all other

algorithms, II BU Cao is faster for many scales, which is related to the sampling of error bounds.

By sampling more error bounds, the first error bound ε1 becomes smaller, which means the

construction of shortcut graph G(C, ε1) using ChinChan (Algorithm 4.1) is faster, due to the

additional pruning. II BU Cao prunes drastically at the first scale, and thus its running time is

almost fully determined by the time spent on the first simplification.
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(a) II BU and II BU Cao (b) DP TD and DP BU

Figure 5.12: Running time of the greedy algorithms on 3000 points for various numbers of scales.

Recall that II BU performs less pruning, since shortcuts in Sk are detected in C instead of

Sk−1. II BU performs best around 7 scales, where there is significant pruning at the first scale

without spending too much time constructing simplifications at higher scales.

We observe that DP BU is 45% more efficient than DP TD. The growth in running time for

both algorithms in the number of scales is much like the growth in the length of the input curve

observed in Figure 5.8b.

Finally, consider Figure 5.13, where the the cumulative simplification sizes are visualized for

various numbers of scales. In Figure 5.13a, we observe the relative cumulative simplification

size given by II TD increases for many scales, since poor greedy choices at higher scales cascade

across more scales. Furthermore, we observe that the relative cumulative simplification size of DP

TD/BU decreases as the number of scales grows. A visualization of the cumulative simplification

size of each algorithm for 68 scales is shown in Figure 5.13b.

(a) Proportions by number of scales (b) 68 scales

Figure 5.13: Cumulative simplification size on 3000 points.

In conclusion, all algorithms exhibit performance linear in the number of scales, except II BU

Cao, which performs best on many scales. The same trade-offs exist between running time and

simplification size as described in Section 5.3.1. The most notable difference is that for many

scales, DP TD and DP BU yield a relative simplification size that is better than for fewer scales.

Thus, DP BU is a reasonable alternative to II Prog. when simplifying for many different levels of

detail.
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Conclusions and Future Work

In this thesis we investigated both the theoretical and practical aspects of progressive simplifica-

tion of polygonal curves. Progressive simplification enables exploration of zoomable visualizations

of spatial data by imposing consistency between simplifications at different levels of detail. We

aimed to bridge the gap between existing heuristic-based algorithms for producing progressive

simplifications, and minimum-link non-progressive simplification algorithms. To solve this prob-

lem, we developed multiple extensions for a common non-progressive minimum-link simplification

algorithm [16] using so-called shortcut graphs.

We developed an optimal algorithm that runs in O(n3m) time, and produces simplifications

by finding shortest paths in weighted shortcut graphs where the weight of an edge (pi, pj) at scale

k encodes the cost of the best possible sequence of simplifications up to scale k on the subcurve

from pi to pj .

We further developed two greedy progressive simplification algorithms with a running time of

O(n2m). These algorithms construct the simplifications in a certain order (bottom-up or top-

down), while enforcing monotonic containment. Because each simplification is constructed using

local minima, these algorithms do not strictly minimize the combined simplification complexity.

To efficiently construct shortcut graphs for multiple different error bounds, we developed an

algorithm that determines the Hausdorff distance [12] of every shortcut to the associated contigu-

ous subsequence on the input curve. This allows us to efficiently determine shortcut validity for

any error bound. The algorithm runs in O(n2 log n) time, which is an improvement over O(n3)

time using existing techniques [16]. Experimental evaluation reveals that this algorithm is only

viable for a large number of scales, compared to independent construction of each shortcut graph

for a fixed error bound using existing algorithms [6]. This makes it a good choice for computing

continuous progressive simplifications in O(n5) time using
(
n
2

)
scales.

To quickly find shortest paths in unweighted shortcut graphs, we developed a representation

of the shortcut graph called a shortcut interval set. This representation was shown to be of

linear size in practice, which allows for finding shortest paths in O(n log n) time, yielding near-

linear performance in practice. This is a significant improvement over the quadratic running-time

performance given by breadth-first search. Furthermore, we showed how construction of shortcut

interval sets can be integrated with existing techniques [6] to significantly speed up construction

of shortcut graphs under the Hausdorff distance in practice. Shortcut interval sets can thus

be integrated with all aspects of min-# curve simplification using shortcut graphs, lowering the

storage requirements from O(n2) to O(n). This greatly improves the scalability of using shortcut

graphs, both in progressive and non-progressive settings.

Experimental evaluation of the optimal progressive simplification algorithm reveals that it is

not scalable to large input curves. We found that the best alternative is a bottom-up greedy

construction of the simplifications using shortcut graphs, from the smallest error bound to the

45
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largest error bound. This greedy algorithm has excellent running-time performance in practice,

while producing near-minimal progressive simplifications.

In conclusion, we have developed several progressive simplification algorithms where for each

algorithm there exists a trade-off between scalability and simplification complexity. As a by-

product of our endeavors, a space-efficient representation of the shortcut graph was developed

which is not only applicable to progressive simplification, but also highly suitable for computing

simplifications for a single error bound.

Although shortcut interval sets yield great benefits in practice, simplification for a single error

bound takes quadratic time in practice to detect all shortcuts. As a future work, it might be of

interest to further optimize the construction of shortcut interval sets. This could be a stepping

stone towards the first near-linear min-# simplification algorithm. This is valuable, since existing

high-performance simplification algorithms either heuristically aim for the smallest number of

points [10], or approximate the minimum number points by a certain factor [1], and may thus

produce simplifications which are significantly worse than the optimum.

We focused on the Hausdorff distance as error measure, though any error measure can be used to

determine the validity of a shortcut. To efficiently employ the developed progressive simplification

algorithms in other settings, it is of interest to develop efficient techniques for constructing shortcut

graphs for error measures other than the Hausdorff distance, such as Fréchet [4] or area-based

measures [8].
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